Alterations in Proteins and Amino Acids of the Cyanobacterium Anacystis nidulans in Response to Different Inorganic Formulations

Main Article Content

Gajendra Kumar Gajendra Pal Singh


Anacystis nidulans is a small, rod-shaped, unicellular, colonial, obligatory phototrophic microalga isolated from Sambhar Lake, Jaipur (Rajasthan). To find out the best inorganic composition cultures were grown in five different defined inorganic medium such as Modified BG-11 medium (pH 7.31), BG-11 medium (7.1), CHU-10 (pH 7.65), Zarrouk’s medium (pH 10.2) and Kratz & Myer medium (pH 9.5) and kept at the temperature of 25 ± 2°C, illuminated with white fluorescent lamps at a light intensity of 2.5 Klux with 12:12 hours light/dark photoperiod in departmental laboratory. Protein content is determined by Bradford assay and qualitatively by SDS-PAGE. Protein expression levels were determined through densitometry. Highest protein and amino acid content were obtained in Modified BG-11 medium as compared to other medium. Two polypeptides of 54.3 and 56.2 kDa were uniquely observed, but the genotype of 35.8 kDa polypeptide was completely degraded under Modified BG-11 inorganic formulation. 35.8, 54.3, 56.2 and 61.8 kDa polypeptides were completely degraded in Zarrouk’s as well as Kratz and Myer medium. The expression of some polypeptides of 14.0, 34.1, 42.3, 45.9, 49.5 and 75.0 kDa were greatly reduced and expressed only 1mm level in Zarrouk’s and Kratz and Myer medium. Quantity of free amino acids maximum was in Modified BG-11 medium and minimum was in the Kratz and Myer Medium. Total 17amino acids were observed in the HPLC chromatogram. No detectable amount of asparagine, glutamine and tryptophan were found throughout the course of the algal life cycle

Article Details



1. Aldehni, M. F.; Sauer, J.; Spielhaupter, C.; Schmid, R. and Forchhammer, K. (2003). Signal transduction protein PII is required for NtcA-regulated gene expression during nitrogen deprivation in the cyanobacterium Synechococcus elongatus strain PCC 7942. J Bacteriol 185: 2582–2591.
2. Allakhaverdiev, S. I.; Sakamoto, A.; Nishiyama, Y.; Inaba, M. and Murata, N. (2000). Ionic and osmotic effects of NaCl-induced inactivation of photosystem I and II in Synechococcus sp. Plant Physiol. 123: 1047-1056.
3. Allen, M. M. (1984). Cyanobacterial cell inclusions. Annu Rev Microbiol 38, 1–25.
4. Allen, M.M. and Smith A.J. (1969). Nitrogen chlorosis in blue-green algae. Arch Microbiol, 69:114–120.
5. Aly, M. S and Amber. S.,. Chemical Composition and Potential Application of Spirulina platensis Biomass. Journal of American Science 2010;6(10):1283-1291
6. Becker E.W (2007). Microalgae: Biotechnology and Microbiology. Cambridge University Press, Cambridge
7. Block, R.J. (1951) Quantitative paper chromatography, a simplified procedure. Proc. Soc. Exp. Biol. Med. 72(2):337–341.
8. Bradford, M. M. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein dye binding. Anal. Biochem. 72 (1976) 248–254.
9. Chan L. L.; Hodgkiss I. J.; Wan J. M. F.; Lum J. H. K.; Mak A. S. C.; Sit W. H. and Lo S. C. L. (2004). Proteomic study of a model causative agent of harmful algal blooms, Prorocentrum triestinum II: The use of differentially expressed protein profiles under different growth phases and growth conditions for bloom prediction. Proteomics 4: 3214–3226.
10. Christian, G. (1990). HPLC Tips and Tricks. Great Britain at the Iden Press, Oxford, 608.
11. Collier, J. L. and Grossman A R. (1994). A small polypeptide triggers complete degradation of light-harvesting phycobiliproteins in nutrient-deprived cyanobacteria. EMBO J.13: 1039–1047.
12. Fabregas, J. Maseda, A. Domınguez, A. Ferreira, M. and Otero A. (2002). Changes in the cell composition of the marine microalga, Nannochloropsis gaditana, during a light : dark cycle. Biotechnol Lett. 24: 1699–1703.
13. Fleurence. J. (1999). Seaweed proteins: biochemical, nutritional aspects and potential uses. Trends in Food Science & Technology, 10: 25-28.
14. Flores, E. and Herrero, A. (1994). Assimilatory nitrogen metabolism and its regulation. In The Mol Bio of Cyanobacteria, 487–517.
15. Garnier, F.; Dubacq, J. P. and Thomas J. C. (1994). Evidence for transient association of new proteins with the Spirulina maxima phycobilisome in relation to light intensity. Plant Physiol.106: 747-754.
16. Glazer, A.N. (1994). Phycobiliproteins—a family of valuable, widely used fluorophores. J Appl Phycol 6:105–112.
17. Gressler, V., Yokoya, N. S., Fujii, M. T., Colepicolo, P., Filho, J. M., Torres, R. P., & Pinto, E. (2009).. Lipid, fatty acid, protein, amino acid and ash contents in four Brazilian red algae species. Food Chemistry, 120(2), 585-590.
18. Grossman, A.; Schaefer, M.; Chiang, G. and Coller, J. (1993). Environmental effects on the light-harvesting complex of cyanobacteria. J. Bacteriol. 175: 575–582.
19. Heraud, P.; Wood, B.R.; Tobin, M.J.; Beardall, J. and McNaughton, D. (2005). Mapping of nutrient-induced biochemical changes in living algal cells using synchrotron infrared microspectroscopy. FEMS Microbiol. Lett. 249: 219–225.
20. Holdt, S. L. and S. Kraan (2011). Bioactive compounds in seaweed: functional food applications and legislation. Journal of Applied Phycology 23: 543–597.
21. Imamoglu E, Sukan EFV, Dalay MC (2007). Effect of different culture media and light intensities on growth of Haematococcus pluvialis. Int. J. Nat. Eng. Sci. 1: 5-9.
22. Kilham, S.S.; Kreeger, D.A.; Goulden, C.E. and Lynn, S.G. (1997). Effects of nutrient limitationon biochemical constituents of Ankistrodes musfalcatus. Freshw. Biol. 38: 591–596.
23. Lee, Y. P. and T. Takahashi. (1966). An improved colorimatric determination of amino acids with the use of inhydrin. Anal. Biochem. 14(1): 71-77.
24. Lembi, C. A. 2000. Relative tolerance of mat-forming algae to copper. Journal of Aquatic PlantManagement.38:68–70.
25. Liotenberg, S. Campbell, D. Rippka, R. Houmard, J. and Tandeau de Marsac, N (1996). Effect of the nitrogen source on phycobiliprotein synthesis and cell reserves in a chromatically adapting filamentous cyanobacterium. Microbiology 142: 611–622.
26. Lourenco S.O., Marquez U.M.L., Mancini-Filho J., Barbarino E. and Aidar E. 1997. Changes in biochemical profile of Tetraselmis gracilis I. Comparison of two culture media. Aquaculture 148: 153–168.
27. Lynn, S.G.; Kilham, S.S.; Kreeger, D.A. and Interlandi, S.J. (2000). Effect of nutrient availabilityon the biochemical and elemental stoichiometry in the freshwater diatom Stephanodiscus minutulus (Bacillariophyceae). J. Phycol. 36: 510–522.
28. Martin, J.H. and Gordon, R.M. (1988). Northeast Pacific iron distributions in relation to phytoplankton productivity. Deep-Sea Res., 35: 177-196.
29. Morris R.J., McCartney M.J. and Robinson G.A. 1983. Studies of a spring phytoplankton bloom in an enclosed experimental ecosystem. I. Biochemical changes in relation to the nutrient chemistry of water. J. Exp. Mar. Biol. Ecol. 70: 249–262.
30. Mosich, T. D.; Bunn, S. E. and Davies, P. M. (2001). The relative importance of shading and nutrients on algal production in subtropical streams. Freshwater Biology, 46: 1269-1278.
31. O’ Kelley, J.C. (1968). Mineral nutrition of algae. A. Rev. Pl. Physiol. 19: 89-112.
32. O’Donohue, M.J.H., Dennison, W.C. (1997). Phytoplankton response to nutrient concentrations, light availability and temperature along an Australian estuarine gradient. Estuaries 20: 521–533.
33. Ogbonna J.C. and Tanaka H. 1996. Night biomass loss and changes in biochemical composition of cells during light/dark cyclic culture of Chlorella pyrenoidosa. J. Ferm. Bioeng. 82: 558–564.
34. Paerl, H. (2008). Nutrient and other environmental controls of harmful cyanobacterial blooms along the freshwater-marine continuum, in: Cyanobacterial Harmful Algal Blooms: State of the Science and Research Needs, edited by: Hudnell, K., Springer, North Carolina, USA, 217–237.
35. Pasternak O, Sochen N, Basser PJ. (2010). The effect of metric selection on the analysis of diffusion tensor MRI data. Neuroimage.; 49;2190–2204.
36. Reynolds, C.S. (1984). The ecology of freshwater phytoplankton. Cambridge University Press, London.
37. Richmond A. (1990). Handbook of Microalgal Mass Culture. CRC Press, Boca Raton, FL. ISBN, 8493-3240.
38. Rosales, N.; Ortega, J.; Mora, R. and Morales, E. (2005). Influence of salinity on the growth andbiochemical composition of the cyanobacterium Synechococcus sp. Ciencias Marinas, 31: 349 – 355.
39. Sambrook, J. Fritsch E.F. and Maniatis T. (1989). Molecular Cloning: A Laboratory Manual. 2nd edn. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, NY.
40. Sauer. J.; Schreiber, U.; Schmid R; Völker U; Forchhammer K. (2001). Nitrogen starvation-induced chlorosis in Synechococcus PCC7942. Low-Level Photosynthesis as a mechanism of long-term survival. Plant Physiol, 126: 233–243.
41. Seitzinger, S. P. (1991). The effect of pH on the release of phosphorus from Potomac estuary sediments – implications for blue-green-algal blooms, Estuar. Coast. Shelf Sci., 33: 409–418.
42. Shad, M.A.; Ansari, T. M.; Pervez, H.; Rubab, M. and Mahmood, T. (2002). Changes in sugar, amino acid and mineral contents of leaves of two mango varieties affected by quick decline disease. J. Biol. Sci., 2: 694-696.
43. Shaul, O. (2002). Magnesium transport and function in plants: the tip of the iceberg. Biometals. 15: 309–323.
44. Singh, A.K. & Sherman, L.A. (2000). Identification of ironresponsive, differential gene expression in the cyanobacterium Synechocystis sp. strain PCC 6803 with a customized amplification library. J Bacteriol 182: 3536–3543.
45. Stengel, D. B., S. Connan and Z. A. Popper. 2011. Algal chemodiversity and bioactivity: sources of natural variability and implications for commercial application. Biotechnol. Adv. 29:483-501.
46. Subhashini, R.; Kumar, K. and Kannaiyan, S. (2003). Intrinsic antibiotic resistance and biochemical characteristics of Anabaena azollae isolated from Azolla– cultures. Indian J. Microbiol., 43: 65 -169.
47. Tandeau De Marsac NT, (2003).Phycobiliproteins and phycobilisomes: the early observations. Photosynth. Res. 6:197-205.
48. Udy, J.W. and Dennison, W.C. (1997). Growth and physiological responses of three seagrass species to elevated sediment nutrients in Moreton Bay, Australia. J. Exp. Mar. Biol. Ecol.217: 253–277.
49. Varfolomeeva S. D. and L. A. Wasserman. (2011). Microalgae as Source of Biofuel, Food, Fodder, and Medicines. Applied Biochemistry and Microbiology 47(9): 789–807.
50. Verma, K. and Mohanty, P. (2000). Changes of the photosynthetic apparatus in Spirulina cyanobacterium by sodium stress. Zeitsch-rift fuÈrNaturforschung 55C, 16-22.
51. Wagner, C., Saizieu Ad, A., Schonfeld, H.J., Kamber, M., Lange, R., Thompson, C.J., Page, M.G. (2002). Genetic analysis and functional characterization of the Streptococcus pneumoniae vic operon. Infect Immun 70: 6121–6128
52. Weber A. and Jung K. (2002). “Profiling Early Osmostress-Dependent Gene Expression in Escherichia coli Using DNA Macroarrays.” J. Bacteriol., 184: 5502-5507.
53. Yamanka, G. and Glazer, A.N. (1980). Dynamic aspects of phycobilisome structure. Phycobilisome turnover during nitrogen starvation in Synechoccous sp. Archives of Microbiology 124: 39-47.
54. Yeesang, C. and Cheirsilp, B. (2011). “Effect of nitrogen, salt, and iron content in the growth medium and light intensity on lipid production by microalgae isolated from freshwater sources in Thailand”. Bioresource Technol., 102: 3034-3040.
55. Zhu C.J., Lee Y.K. and Chao T.M. 1997. Effects of temperature and growth phase on lipid and biochemical composition of Isochrysis galbana TK1. J. Appl. Phycol. 9: 451–457.