Chitosans from Rhizopus stolonifer (strain CBMAI 1551): Characterization and Dense Film Formation

Main Article Content

Douglas Henrique Cardoso Thiago Ferreira da Conceição Admir Jose Giachini Marcio Jose Rossi


Chitosan is a bioactive amino polymer with wide applications. Mainly derived from chitin of marine sources, its traditional production still has some drawbacks such as irregular supply, low quality of product and lack of standardization. Farther, extraction processes are time-consuming with considerable environmental impacts, an extremely non-green process. Many works have shown the possibility of producing native chitosan from Mucorales fungi, which is more easily extracted. Such process is advantageous due to low costs, process control and great possibility of high quality products. Moreover, the extraction of chitosan is faster and generates less pollutants. In this scenario, the possibility of standardized production allied with facilitated extraction and less probability of toxicological side effects from marine sources are characteristics that motivated this work. A Mucorales isolate was cultured and the chitosans – native and semi-synthetic – obtained through heterogeneous extraction were compared. Results show substantial differences between them. Those differences are related to the processes required for extraction, yield, productivity, and quality. This work reinforces that Mucorales fungi excel as an alternative for chitosan production.

Article Details

Author Biographies

Douglas Henrique Cardoso, Doctorate candidate

Departamento de Microbiologia, Imunologia e Parasitologia, Centro de Ciencias Biologicas, Universidade Federal de Santa Catarina, CP 476, 88040-900, Florianopolis, SC, Brazil

Thiago Ferreira da Conceição, Professor

Departamento de Quí­mica, Centro de Ciencias Fi­sicas e Matematicas, Universidade Federal de Santa Catarina, CP 476, 88040-900, Florianopolis, SC, Brazil

Admir Jose Giachini, Professor

Departamento de Microbiologia, Imunologia e Parasitologia, Centro de Ciencias Biologicas, Universidade Federal de Santa Catarina, CP 476, 88040-900, Florianopolis, SC, Brazil

Marcio Jose Rossi

Departamento de Microbiologia, Imunologia e Parasitologia, Centro de Ciencias Biologicas, Universidade Federal de Santa Catarina, CP 476, 88040-900, Florianopolis, SC, Brazil


[1] Alvarenga, E. S.; Pereira de Oliveira, C.; Roberto Bellato, C. (2010). An approach to understanding the deacetylation degree of chitosan. Carbohydr Polym, 80(4), 1155–1160
[2] Amorim, R. V. da S.; Souza, W. De; Fukushima, K.; Campos-Takaki, G. M. (2001). Faster Chitosan Production by Mucoralean Strains. Braz J Microbiol, 32, 20–23
[3] Angeli, J. P. F.; Ribeiro, L. R.; Camelini, C. M.; de Mendonça, M. M.; Mantovani, M. S. (2009). Evaluation of the antigenotoxicity of polysaccharides and β-glucans from Agaricus blazei, a model study with the single cell gel electrophoresis/Hep G2 assay. J Food Compos Anal, 22 (7-8), 699–703
[4] Aranaz, I.; Mengíbar, M.; Harris, R., et al. (2009). Functional characterization of chitin and chitosan. Curr Chem Biol, 3(2), 203–230
[5] Beppu, M. M.; Arruda, E. J.; Santana, C.C. (1999). Síntese e Caracterização de Estruturas Densas e Porosas de Quitosana. Polímeros: Ciência e Tecnologia, 4, 163–169, 1999
[6] Berger, L. R. R., Stamford, T. C. M., Stamford-Arnaud, T. M., de Alcântara, S. R. C., da Silva, A. C., da Silva, A. M., do Nascimento, A. E., de Campos-Takaki, G. M. (2014). Green conversion of agroindustrial wastes into chitin and chitosan by Rhizopus arrhizus and Cunninghamella elegans strains. Int J Mol Sci, 15 (5), 9082–9102
[7] Camelini, C. M.; Pena, D. A.; Gomes, A.; Steindel, M.; Rossi, M. J.; Giachini, A. J.; Mendonça, M. M. (2011). An efficient technique for in vitro preservation of Agaricus subrufescens (=A. brasiliensis). Ann Microbiol, 62(3), 1279–1285
[8] Camelini, C. M.; Gomes, A.; Cardozo, F. T. G. S., Simões, C. M. O.; Rossi, M. J.; Giachini, A. J.; de Mendonça, M. M. (2013). Production of polysaccharide from Agaricus subrufescens Peck on solid-state fermentation. Appl Microbiol Biotechnol, 97(1), 123–33
[9] Camelini, C. M.; Rezzadori, K.; Benedetti, S.; Proner, M. C.; Fogaça, L.; Azambuja, A. A.; Giachini, A. J.; Rossi, M. J.; Petrus, J. C. C. (2013). Nanofiltration of polysaccharides from Agaricus subrufescens. Appl Environ Microbiol, 97(23), 9993–10002
[10] Cardoso, A.; Lins, C. I. M.; Ramos, E. dos S.; Silva, M. C. F.; Campos-Takaki, G. M. (2012). Microbial Enhance of Chitosan Production by Rhizopus arrhizus Using Agroindustrial Substrates. Molecules, 17, 4904–4914
[11] Cardozo, F. T. G. D. S.; Camelini, C. M.; Mascarello, A.; Rossi, et al. (2011). Antiherpetic activity of a sulfated polysaccharide from Agaricus brasiliensis mycelia. Antivir Res, 92(1), 108–14
[12] Daraghmeh, N. H.; Leharne, S. A.; Chowdhry, B. Z.; Al Omari, M. M.; Badwan, A. A. (2011). Chitin. In: Brittain, H. G. (eds). Profiles of Drug Substances, Excipients, and Related Methodology, 36. Academic Press, 35-102
[13] Dhillon, G. S.; Kaur, S.; Brar, S. K.; Verma, M. (2012). Green synthesis approach: extraction of chitosan from fungus mycelia. Crit Rev Biotechnol, 1–25
[14] El-Hefian, E. A., Elgannoudi, E. S., Mainal, A., & Yahaya, A. H. (2010). Characterization of chitosan in acetic acid: Rheological and thermal studies. Turkish Journal of Chemistry, 34(1), 47–56
[15] Foster, M.S; Bills, G.F. (2004). Formulae for selected materials used to isolate and study fungi and fungal allies. In: MUELLER, J.M.; BILLS, G.F.; FOSTER, M.S. Biodiversity of fungi: inventory and monitoring methods. Elsevier Academic Press, San Diego, CA, pp.595-618.
[16] Fu, R. R.; Ji, X. J.; Ren, Y. F.; Wang, G.; Cheng, B. W. (2016). Different Molecular Weight Chitosans Prepared via the Ionic Liquid Hydrolysis and their Antibacterial Activity. Key Eng Mater, 730, 127–134.
[17] Hu, K.-J., Hu, J.-L., Ho, K.-P., Yeung, K.-W. (2004). Screening of fungi for chitosan producers, and copper adsorption capacity of fungal chitosan and chitosanaceous materials. Carbohydr Polym, 58 (1), 45–52. DOI: 10.1016/j.carbpol.2004.06.015
[18] Kaur, S.; Dhillon, G. S. (2013). The versatile biopolymer chitosan: potential sources, evaluation of extraction methods and applications. Crit Rev Microbiol, 1-21
[19] Mati-Baouche, N., Elchinger, P., Baynast, H. De, Pierre, G., Delattre, C., & Michaud, P. (2014). Chitosan as an adhesive. Eur Polym J, 60, 198–212
[20] Miura, S.; Arimura, T.; Hoshino, M.; Kojima, M.; Dwiarti, L.; Okabe, M. (2003). Optimization and scale-up of L-lactic acid fermentation by mutant strain Rhizopus sp. MK-96-1196 in airlift bioreactors. J Biosci Bioeng, 96(1), 65–9.
[21] Moussa, S.A.; Farouk, A. F.; Opwis, K.; Schollmeyer, E. (2011). Production, Characterization and Antibacterial Activity of Mucor rouxii DSM-119 Chitosan. J Textile Sci Engg, 1(1), 1–5.
[22] Nitschke, J.; Altenbach, H.; Malolepszy, T.; Mölleken, H. (2011). A new method for the quantification of chitin and chitosan in edible mushrooms. Carbohydr Res, 346, 1307–1310
[23] No, H. K., & Meyers, S. P. (1995). Preparation and characterization of chitin and chitosan: a review. J Aquat Food Prod T, 4, 27–52.
[24] Paul, S.; Jayan, A.; Sasikumar, C.; Cherian, S. (2014). Extraction and Purification of Chitosan from Chitin Isolated from Sea Prawn (Fenneropenaeus indicus). Asian J Pharm Clin Res, 7(4), 201-204.
[25] Pitt, J. I.; Hocking, A. D. (2009). Fungi and Food Spoilage (3rd ed.). Springer Science+Business Media, New York, USA
[26] Posch, A. E.; Herwig, C.; Spadiut, O. (2013). Science-based bioprocess design for filamentous fungi. Trends Biotechnol, 31(1), 37–44
[27] Ruiz-Herrera, J.; Ortiz-Castellanos, L. (2010). Analysis of the phylogenetic relationships and evolution of the cell walls from yeasts and fungi. FEMS Yeast Res, 10(3), 225–43
[28] Seo, S.; King, J. M.; Prinyawiwatkul, W. (2007). Simultaneous depolymerization and decolorization of chitosan by ozone treatment. J Food Sci, 72(9), C522–6
[29] Shajahan, A.; Sathiyaseelan, A.; Karthik,. S;. Narayan, E. R.; Narayanan, V.; Kaviyarasan, V. (2014). Preparation of Nanocomposite Based Film from Fungal Chitosan and Its Applications. IJIRSE, International Conference on Advances in New materials, ISSN (Online) 2347-3207, 1–9.
[30] Silveira, D. B.; Celmer, Á. J.; Camelini, C. M., et al. (2012). Mass separation and in vitro immunological activity of membrane-fractionated polysaccharides from fruiting body and mycelium of Agaricus subrufescens. Biotechnol Bioprocess Eng, 17(4), 804–811.
[31] Streit, F.; Koch, F.; Laranjeira, M. C. M.; Ninow, J. L. (2009). Production of Fungal Chitosan in Liquid Cultivation using Apple Pomace as Substrate. Braz J Microbiol, 40, 20–25
[32] Tan, S. C.; Tan, T. K.; Wong, S. M.; Khorb, E. (1996). The chitosan yield of zygomycetes at their optimum harvesting time. Carbohydr Polym, 30, 239–242
[33] Terbojevich, M., & Muzzarelli, R. A. A. (2000). Chitosan. In: G. O. Phillips & P. A. Williams (Eds.), Handbook of Hydrocolloids, Cambridge, England, Woodhead Pub, pp. 367–378
[34] Trutnau, M.; Suckale, N.; Groeger, G.; Bley, T.; Ondruschka, J. (2009). Enhanced chitosan production and modeling hyphal growth of Mucor rouxii interpreting the dependence of chitosan yields on processing and cultivation time. Eng Life Sci, 9(6), 437–443
[35] Wang, W.-P.; Du, Y.-M.; Wang, X.-Y. (2008). Physical properties of fungal chitosan. World J Microbiol Biotechnol, 24, 2717–2720
[36] Wang, W.; Du, Y; Qiu, Y.; Wang, X.; Hu, Y.; Yang, J.; Kennedy, J. F. (2008). A new green technology for direct production of low molecular weight chitosan. Carbohydr Polym, 74(1), 127–132
[37] Wisitrassameewong, K.; Karunarathna, S. C.; Thongklang, N.; Zhao, R.; Callac, P.; Moukha, S.; Hyde, K. D. (2012). Agaricus subrufescens: A review. Saudi J Biol Sci, 19(2), 131–146
[38] Youn, D. K.; No, H. K.; Kim, D. S.; Prinyawiwatkul, W. (2008). Decoloration of chitosan by UV irradiation. Carbohydr Polym, 73(3), 384–389
[39] Zamani, A.; Jeihanipour, A.; Edebo, L.; Niklasson, C.; Taherzadeh, M. J. (2008). Determination of glucosamine and N-acetyl glucosamine in fungal cell walls. J Agric Food Chem, 56(18), 8314–8
[40] Teng, W. L.; Khor, E.; Tan, T. K.; Lim, L. Y.; Tan, S. C. (2001). Concurrent production of chitin from shrimp shells and fungi, Carbohydrate Research, 332 (3), 305-316.