Technical sheet of influence of Freeze-Dried Yeast Starter Cultures on Volatile Compounds of Tchapalo, a Traditional Sorghum Beer from Côte d’Ivoire

Main Article Content

COULIBALY Wahauwouélé Hermann BOUATENIN Koffi Maizan Jean-Paul KOUAME Kohi Alfred RIGOU Peggy


The production of the Ivorian sorghum beer known as tchapalo remains more or less an empirical process. The use of starter cultures was therefore suggested as the appropriate approach to alleviate the problems of variations inorganoleptic quality and microbiological stability. In this study, we evaluated the capacity of S. cerevisiae and C. tropicalis to produce sorghum beer as freeze-dried starter in mixed or pure cultures. Beers produced with mixed freeze-dried cultures of S. cerevisiae F12-7 and C. tropicalis C0-7 showed residual sugars and ethanol contents similar to beers obtained with S. cerevisiae F12-7 pure culture, but the total sum of organic acids analyzed was the highest with the mixed culture (15.71 g/L). Higher alcohols were quantitatively the largest group of volatile compounds detected in beers. Among these compounds, 2-phenyl ethanol, a higher alcohol that plays an important role in beer flavor, was highly produced with the mixed culture (10174.8 µg/L) than with the pure culture (8749.9 µg/L).

Article Details



[1] Sanni, A.I. 1993. The need for process optimization of African fermented foods and beverages. Int. J. Food Microbiol., 18, 85–95.
[2] Holzapfel, W.H. 2002. Appropriate starter culture technologies for small-scale fermentation in developing countries. Int. J. Food Microbiol. 75, 197–212.
[3] Van der Aa, K.A.; Jespersen, L.; Glover, R.L.K.; Diawara, B.; Jakobsen, M. 2001. Identification and characterization of Saccharomyces cerevisiae strains isolated from West African sorghum beer. Yeast, 18, 1069–1079.
[4] N’guessan, K.F.; Brou, K.; Noemie, J.; Casaregola, S.; Djè, K.M. 2011. Identification of yeasts during alcoholic fermentation of tchapalo, a traditional sorghum beer from Côte d’Ivoire. Antonie Van Leeuwenhoek, 99, 855–864.
[5] Hubalek, Z. 2003. Protectants used in the cryopreservation of microorganisms. Cryobiology, 46, 205–229.
[6] N’Guessan, F.K.; Coulibaly, H.W.; Alloue-Boraud, M.W.; Cot, M.; Djè, K.M. 2016. Production of freeze-dried yeast culture for the brewing of traditional sorghum beer, tchapalo. FoodSci. Nutr. 4, 34–41.
[7] Dufour, J.-P.; Malcorps, P.; Silcock, P. 2003. Control of ester synthesis during brewery fermentation. In Brewing Yeast Fermentation Performance; Blackwell Publishing: Hoboken, NJ, USA, pp. 213–233.
[8] Estela-Escalante, W.D.; Rosales-Mendoza, S.; Moscosa-Santillán, M.; González-Ramírez, J.E. 2016. Evaluation of the fermentative potential of Candida zemplinina yeasts for craft beer fermentation. J.Inst. Brew. 122, 530–535.
[9] Lambrechts, M.G.; Pretorius, I.S. 2000. Yeasts and its importance to wine aroma—A review. S.Afr. J.Enol. Vitic. 21, 97–129.
[10] Canonico, L.; Agarbati, A.;Comitini, F.; Ciani, M. 2016. Torulaspora delbrueckii in the brewing process: A new approach to enhance bioflavour and to reduce ethanol content. Food Microbiol. 56, 45–51.
[11] Michel, M.; Kopecká, J.; Meier-Dörnberg, T.; Zarnkow, M.; Jacob, F.; Hutzler, M. 2016. Screening for new brewing yeasts in the non-Saccharomyces sector with Torulaspora delbrueckii as model. Yeast, 33,129–144.
[12] Rojas, V.; Gil, J.V.; Pinaga, F.; Manzanares, P. 2003. Acetate ester formation in wine by mixed cultures in laboratory fermentations. Int. J. Food Microbiol. 86, 181–188.
[13] Moreira, N.; Mendes, F.; dePinho, P.G.; Hogg, T.; Vasconcelos, I. 2008. Heavy Sulphur compounds, higher alcohols and esters production profile of Hansenispora uvarum and Hanseniaspora guilliermondii grown as pure and mixed cultures in grape must. Int. J. Food Microbiol. 124, 231–238.
[14] Comitini, F.; Gobbi, M.; Domizio, P.; Romani, C.; Lencioni, L.; Mannazzu, I.; Ciani, M. 2011. Selected non-Saccharomyces wine yeasts in controlled multistarter fermentations with Saccharomyces cerevisiae. Food Microbiol. 28, 873–888.
[15] Lee, P.R.; Saputra, A.; Yu,B.; Curran, P.; Liu, S.Q. 2012. Effects of pure and mixed-cultures of Saccharomyces cerevisiae and Williopsissaturnus on the volatile profiles of grape wine. Food Biotechnol. 26, 307–325.