MWCNTs/ZnO Nanofibers Fabrication, Properties and Applications

  • Magda Dawy Badry National Research Centre
Keywords: MWCNTs/ZnONanofibers, electrical, optical and biological properties

Abstract

Electrospun MWCNTs nanofibers (CNF1, CNF2 and CNF3) with different concentrations of MWCNTs (0.3, 1.5, 2 wt%), respectively, were deposited on Aluminum foil substrates.  Also,Zinc AcetatedihydrateZn(CH3COO)2.2H2O (ZNF) and MWCNTs/zinc acetate (CZNF)nanofiberswere deposited on Aluminum foil substratesand annealed in the presence of oxygen at 400 oC. The resultant fibers were characterized using X-ray differaction (XRD), scanning electron microscope with energy dispersive X-Ray spectrophotometry (SEM,EDX), Fourier transform infrared (FTIR). SEM,EDX and FTIR exhibited a total decomposition of the organic precursor after calcination and formation of zinc oxide (ZONF and CZONF). The mean fiber diameter was found to be increased with increasing MWCNTs concentration and ranged 490-767 nm. XRD patterns indicated that ZnO was corundum with the hexagonal wurtzite structure. The crystallite size of ZONF and CZONF were determined by shurrer equation to be26 and  29.7  nm, respectively. The optical analysis indicated that the percentage transmittance increased after calcination.The band gap for the electrospun fibers before and after calcination was calculated. CZONF nanofibers have elec­trical properties similar to those of semiconductors. The testedcompounds CNF2, CNF3, CZNF and CZONF exhibited different activities against the bacteriaand yeast pathogen Candidaalbicans. CZNF compound is the most active against the bacteria and yeast pathogen. So, these compounds can be used as food packaging.

 

Downloads

Download data is not yet available.

References

Kongkanand A, Kamat PV (2007) Electron storage in single wall carbon nanotubes. Fermi level equilibration in semiconductor–SWCNT suspensions. ACS Nano 1(1):13-21. doi:10.1021/nn700036f.

Kongkanand A, Domy´0nguez RM, Kamat PV (2007) Single wall carbon nanotube scaffolds for photoelectrochemical solar cells: capture and transport of photogenerated electrons. Nano Lett 7(3):676-680. doi:10.1021/nl0627238.

Feynman R. There’s plenty of room at the bottom. J Sci. 1991;254:1300-1301.

Sondi I, Salopek-Sondi B. Silver nanoparticles as antimicrobial agent: a case study on E. coli as a model for Gram-negative bacteria.J Colloid Interface Sci. 2004;275(1):177.

Morones JR, Elechiguerra JL, Camacho A, et al. The bactericidal effect of silver nanoparticles. Nanotechnology. 2005;16(10):2346.

Sawai J. Quantitative evaluation of antibacterial activities of metallic oxide powders (ZnO, MgO and CaO) by conductimetric assay. J Microbial Method. 2003;54:177-182.

Loan TT, Long NN, Ha LH. Photoluminescence properties of Co-doped ZnOnanorods synthesized by hydrothermal method. J Phys D Appl Phys. 2009;42:65412.

Akhavan O, Ghaderi E. Enhancement of antibacterial properties of Ag nanorods by electric field. Sci Tech Adv Mater. 2009;10:015003-015007.

Herng TS, Lau SP, Yu SF, et al. Magnetic anisotropy in the ferromagnetic Cu-doped ZnO nanoneedles. Appl PhysLett. 2007;90:032509.

Zhong CJ, Mave MM. Coree Shell assembled nanoparticles as catalysts. Adv Mater. 2001;13(19):1507-1511.

Liz-Marzan LM. Tailoring surface plasmons through the morphology and assembly of metal nanoparticles. Langmuir. 2006;22(1):32-41.

Alammar T, Mudring AV. Facile preparation of Ag/ZnO nanoparticles via photoreduction. J Material Sci. 2009;44(12):3218-3222.

Kawashita M, Tsuneyama S, Miyaji F, Kokubo T, Kozuka H, Yamamotto K. Antibacterial silver-containing silica glass prepared by sol-gel method. Biomaterials. 2000;21:393-398.

Pal S, Tak YK, Song JM. Does the antibacterial activity of silver nanoparticles depend on the shape of the nanoparticle? A study of the Gram-negative bacterium Escherichia coli. J App Environ Microbiol. 2007;73(6):1712-1720.

Lin W-C, Chen C-N, Tseng T-T, Wei M-H, Hsieh JH, Tseng WJ. Micellar layer-by-layer synthesis of TiO2/Ag hybrid :particles for bactericidal and photocatalytic activities. J Eur Ceram Soc. 2010;30:2849-2857.

Kassaee MZ, Akhavan A, Sheikh N, Sodagar A. Antibacterial effects of a new dental acrylic. J ApplPolym Sci. 2008;110:1699.

Lee HJ, Yeo SY, Jeong SH. Antibacterial effect of nanosized silver colloidal solution on textile fabrics. J Mater Sci.2003;38:2199-2204.

Staumal B, Baretjky B, Mazilkin A, Protasiba S, Petrastrumal A. Increase of Mn solubility with decreasing grain size in ZnO. J Eur Ceram Soc. 2009;29:1963.

Sawai J. Quantitative evaluation of antibacterial activities of metallic oxide powders (ZnO, MgO and CaO) by conductimetric assay. J Microbial Method. 2003;54:177-182.

Loan TT, Long NN, Ha LH. Photoluminescence properties of Co-doped ZnO nanorods synthesized by hydrothermal method. J Phys D Appl Phys. 2009;42:65412.

Akhavan O, Ghaderi E. Enhancement of antibacterial properties of Ag nanorods by electric field. Sci Tech Adv Mater. 2009;10:015003-015007.

Herng TS, Lau SP, Yu SF, et al. Magnetic anisotropy in the ferromagnetic Cu-doped ZnO nanoneedles. Appl PhysLett. 2007;90:032509.

Zhong CJ, Mave MM. CoreeShell assembled nanoparticles as catalysts. Adv Mater. 2001;13(19):1507-1511.

Liz-Marzan LM. Tailoring surface plasmons through the morphology and assembly of metal nanoparticles. Langmuir. 2006;22(1):32-41.

E.D. Adelowo, A.Y. Fasasi, M.O. Adeoye, S.O. Alayande, Struc-tural and Optical Properties of Tin Doped Zinc Oxide Fibres Prepared By Electrospinning Technique, Chemistry and Materials Research (2013) 96-105.

X. Zhang, M.R. Reagan, L.K. David, Electrospun Silk Bio-material Scaffolds for Regenerative Medicine, Advanced DrugDelivery Review (2009) 988-1006.

J. -h. He, Y. Liu, ElectrospunNanofibres and Their Applications,iSmither, Shrewsbury, 2008.

W.E. Teo, S. Ramakrishna, A review on electrospinningdesignandnanofibre assemblies, Nanotecnology (2006) R89-R106.

N. Bhardwaj, S.C. Kundu, Electrospinning: A fascinatingfiber fabrication technique, Biotecnology Advances 28 (2010)325-347.

S. Ramakrishna, K. Fujihara, W.-E. Teo, T.-C. Lim, Z. Ma, Anintroduction to electrospinning and nanofibers, World ScientificPublishing Company Limited, Singapore, 2005.

B.M. Sorayani, R. Bagherzadeh, M. Latifi, Fabrication of com-posite PVDF-ZnOnanofiber mats by electrospinning for energyscavenging application with enhanced efficiency, J Polym Res 22(130) (2015).

H.S Bolarinwa, M.U. Onuu, A.Y. Fasasi, S.O. Alayande, L.O. Animasahun, I.O. Abdulsalami, O.G. Fadodun, I.A. Egunjobi Determination of optical parameters of zinc oxide nanofibredeposited by electrospinning technique Journal of Taibah University for Science 11 (2017) 1245-1258.

Wilkins, TD.,Holdeman, JJ., Abramson, IJ. and Moore, WEC. 1972. Standardized single-disc method for antibiotic susceptibility testing of anaerobic bacteria. Antimicrob Agents Chemother. I. 1(6):451-455.

S. Martin, G. Liangfeng, T. Satyan, T. Satyanarayana, G. Feng,G. Marc, Simultaneous determination of several crystal structuresfrom powder mixtures: the combination of powder X-ray diffrac-tion, band-target entropy minimization and Rietveldmethods,Journal of Applied Crystallography 47 (2) (2014) 659-667.

F .Avilés, J.V. Cauich- Rodríguez, L. Moo-Tah, A. May-Pat, &R.Vargas-Coronado, 47(2009)2970-2975.

R. Yudianti, H. Onggo, Y. Saito, T. Iwata, and J.-I.Azuma. Open Materials Science Journal ,vol.5, (2011),pp.242-247.

Wu, H., Pan, W., 2006. Preparation of Zinc oxide nanofibers by electrospinning. J. Am. Ceram. Soc. 89, 699-701.

Y.-Y. Cho, C. Kuo, Optical and electrical characterization of elec-trospun Al-doped zinc oxide nanofibers as transparent electrodes,J. Mater. Chem. C 4 (2016) 7649-7657.

Y. Liao, T. Fukuda, S. Wang, Electrospun metal oxide nanofibersand their energy application, in: M.M. Rahman, M. Abdullah(Eds.), Nanofiber research – Reaching new heights, InTech Open,2016, pp. 169-190.

Song SN, Wang XK, Chang RPH, Ketterson JB. Electronic proper¬ties of graphite nanotubules from galvanomagnetic effects. Phys Rev Lett, 72, 697 (1994). http://dx.doi.org/10.1103/PhysRevLett. 72.697.

Bachtold A, Henny M, Terrier C, Strunk C, Schonenberger C, Salvetat JP, Bonard JM, Forro L. Contacting carbon nanotubesselectively with low-ohmic contacts for four-probe electric mea¬surements. Appl Phys Lett, 73, 274 (1998). http://dx.doi.org/ 10.1063/1.121778.

Dai H, Wong EW, Lieber CM. Probing electrical transport in nano¬materials: conductivity of individual carbon nanotubes. Science, 272, 523 (1996). http://dx.doi.org/10.1126/science.272.5261.523.

Berger C, Yi Y, Wang ZL, de Heer WA. Multiwalled carbon nano¬tubes are ballistic conductors at room temperature. Appl Phys A, 74, 363 (2002). http://dx.doi.org/10.1007/s003390201279.

Lee RS, Kim HJ, Fischer JE, Thess A, Smalley RE. Conductivity enhancement in single-walled carbon nanotube bundles doped with K and Br. Nature, 388, 255 (1997).

Randeniya LK, Bendavid A, Martin PJ, Tran CD. Composite yarns of multiwalled carbon nanotubes with metallic electrical conductivity. Small, 6, 1806 (2010). http://dx.doi.org/10.1002/ smll.201000493.

Published
2019-06-25
How to Cite
Badry, M. (2019). MWCNTs/ZnO Nanofibers Fabrication, Properties and Applications. JOURNAL OF ADVANCES IN PHYSICS, 16(1), 196-211. https://doi.org/10.24297/jap.v16i1.8274
Section
Articles