Energy Spectrum of Relativistic Electrons Channeled Through Single-Wall Carbon Nanotubes

  • M. H. Ali Physics department, Faculty of Science, Suez-Canal University, Ismailia 41522, Egypt.
Keywords: Channeling, Carbon nanotubes, Relativistic electron beams, Bound states


The energy eigenvalues of the channeled electrons through single wall carbon nanotubes (n,m) was calculated.  According to the continuum model approximation given by Lindhard for the case of an axial channeling in single crystals, the actual periodic potential of a row of atoms is replaced by a potential averaged over a direction parallel to the row, called continuum potential. The calculations was executed by using the atomic interaction potential as given by Moliere potential. The maximum number of bound states and the energy eigenvalues is calculated for positrons of 100 MeV energy incident in a direction parallel to the nanotube axis, by using WKB method. The calculations showed that the effect of temperature by using Debye approximation of thermal vibration amplitude on the channeling potential is very small and gave the same eigenvalues and the same number of bound states as that for the static nanotubes.


Download data is not yet available.


1. J. Lindhard, Influence of crystal lattice on motion of energetic charged particle, Mat. Fys. Medd. Dan. Vid. Selsk. 34 (14) (1965).
2. D. S. Gemmel, Channeling and related effects in the motion of charged particles through crystals, Rev. Mod. Phys. Vol. 46, (1974) 129.
3. M. K. Abu-Assy, B. M .Kamal, and A .A .Mohamed, “The effect of anharmonic potential on the planar channeling radiation of positrons in the disordered fcc single crystals”, Egypt. J. Sol, Vol. 27, No. 1 (2004) 9-24.
4. M. K. Abu-Assy, M. Y. El-Ashry and A. A. Mohamed, “Dechanneling of positrons in disordered lattices – Effect of anharmonic potential”, Physica Scripta.Vol. 72 (2005) 68-74.
5. M. K. Abu-Assy, “Quantum mechanical calculation of disordered length in fcc single crystals using channeling techniques, Physica Scripta. Vol. 73(2006) 349-353.
6. M. K. Abu-Assy, "Effect of temperature on transmission of planar channeled positrons in cubic metals containing point defects", Nucl. Instr.and Meth. B 267 (2009) 2515 – 2520.
7. M. K. Abu-Assy, E. Shalaan and A. H. Abdelaziz, “Effect of lattice thermal vibrations on dechanneling of positrons in disordered cubic metals”, Arab J. Nucl. Sci. Appl. Vol. 43, No. 1 (2010) 182-194.
8. X. Artru, S. P. Fomin, N. F. Shulga, K. A. Ispirian and N. K. Zhevago, Phys. Rep. 412 (2005) 89-189.
9. Z. L. Miskovic, Radiation Effects & Defects in Solids, Vol.162, Nos. 3-4, March-April (2007) 185-205.
10. M. S. Dresselhaus, G. Dresselhaus and Ph. Avouris (Editors), Carbon Nanotubes: Synthesis, Structure, Properties and Applications (Springer, New York, 2001).
11. G. Moliere, Z. Naturforsch. A 2, 133 (1947).
12. "M. K. Abu-Assy, M.Y.El-Ashry, A. R. Abdullah and M. H. Ali."Energy spectrum of relativistic positrons channeled through single-walled carbon nanotubes". Accepted for publication in Egypt. J. Solids. (2016)."
13. B. R. Appleton, C. Erginsoy, M. W. Gibson, Phys. Rev. 161, (1967) 330.
14. S. Petrovic, I. Telecki, D. Borka and N. Nesovic, Physics Letters A 372 (2008) 6003-6007.
15. L. I. Schiff, "Quantum Mechanics", New York, Mc Graw-Hill, (1968).