Intransitive Permutation Groups with Bounded Movement Having Maximum Degree

  • Behnam Razzagh  Islamic Azad University

Abstract

Let G be a permutation group on a set CaptureO.PNGwith no fixed points in CaptureO1.PNGand let m be a positive integer. If for each subset Capture_ell.PNGof CaptureO2.PNG the size Capture_ell2.PNG is bounded, for Captureg.PNG, we define the movement of g as the max Capture_ell21.PNG over all subsets Capture_ell1.PNGof CaptureO3.PNG. In this paper we classified all of permutation groups on set CaptureO4.PNGof size 3m + 1 with 2 orbits such that has movement m . 2000 AMS classification subjects: 20B25

Author Biography

Behnam Razzagh,  Islamic Azad University

Faculty Member, Studies Applied Mathematics Science and Research Branch, Mathemathic Department, Islamic Azad University, Iran

References

C.E.Praeger,On permutation groups with bounded movement,J.Algebra ,144(1991),436-442.

C.E.Praeger, The separation theorem for group actions, in ”ordered Groups and Infinite Groups”(W.charles Holland, Ed.), Kluwer Academic, Dordrecht/ Boston/ Lond, 1995.

A.Hassani,M.Khayaty,E.I.Khukhro and C.E.Praeger, Transitive permutation groups with bounded movement having maximum degree.J. Algebra,214(1999),317-337.

A.Gardiner,C.E.Praeger,Transitive permutation groups with bounded movement,J.Algebra 168(1994)798-803.

A.Mann,C.E.Praeger,ransitive permutation groups of minimal movement, J.Algebra 181(1996)903-911.

H.Wielandt,Finite Permutation Groups,Academic Press,NewYork,1968.

P.S.Kim, Y.Kim,Certain groups with bounded movement having the maximal number of orbits,J.Algebra 252(2002)74-83.

L.Brailovsky, Structure of quasi-invariant sets, Arch.Math.,59 (1992),322- 326.

L.Brailovsky, D.Pasechnix , C.E.Praeger, Subsets close to invarianr subset of quasi-invariant subsets for group actions ,,Proc.Amer. Math.Soc. ,123(1995),2283-2295.

J.R.Cho, P.S.Kim, and C.E.Praeger, The maximal number of orbits of a permutation Group with Bounded Movement, J.Algebra,214 (1999),625- 630.

P.M.Neumann, The structure of finitary Permutation groups, Arch. Math. (Basel) 27(1976),3-17.

B.H.Neumann, Groups covered by permutable subsets, J. London Math soc., 29(1954), 236-248. 7

P.M.Neumann, C.E.Praeger, On the Movement of permutation Group, J.Algebra, 214, (1999)631-635.

Published
2019-01-31
How to Cite
Razzagh, B. (2019). Intransitive Permutation Groups with Bounded Movement Having Maximum Degree. JOURNAL OF ADVANCES IN MATHEMATICS, 16, 8272-8279. https://doi.org/10.24297/jam.v16i0.8091
Section
Articles