Symmetry problem 1

  • Alexander G. Ramm Department of Mathematics, Kansas State University 

Abstract

A symmetry problem is solved. A new method is used. The idea of this methodis to reduce to a contradiction the PDE and the over-determined boundary data on the boundary.The new method allows one to solve other symmetry problems.

Author Biography

Alexander G. Ramm, Department of Mathematics, Kansas State University 

Department of Mathematics  Kansas State University  Manhattan, KS 66506-2602 USA

References

T. Chatelain and A. Henrot, Some results about Schier's conjectures, Inverse Problems, 15, (1999), 647-658.

A. G. Ramm, Inverse Problems, Springer, New York, 2005.

A. G. Ramm, A symmetry problem, Ann. Polon. Math., 92, (2007), 49-54.

A. G. Ramm, Symmetry problem, Proc. Amer. Math. Soc., 141, N2,(2013), 515-521.

A. G. Ramm, The Pompeiu problem, Global Journ. of Math. Analysis (GJMA), 1, N1, (2013), 1-10.

Open access Journal:

http://www.sciencepubco.com/index.php/GJMA/issue/current

A. G. Ramm, A symmetry result for strictly convex domains, Analysis, 35 (1), (2015), 29-32.

A. G. Ramm, Solution to the Pompeiu problem and the related symmetry problem, Appl. Math. Lett., 63, (2017),

-33.

A. G. Ramm, Scattering by obstacles, D.Reidel, Dordrecht, 1986.

A. G. Ramm, Scattering by obstacles and potentials, World Sci. Publ., Singapore, 2017.

A. G. Ramm, Necessary and sucient condition for a surface to be a sphere, Open J. Math. Anal., 2, (2018),

issue 2, 51-52.

Open access: https://pisrt.org/psr-press/journals/oma/

Published
2018-12-01
How to Cite
Ramm, A. (2018). Symmetry problem 1. JOURNAL OF ADVANCES IN MATHEMATICS, 15, 8093-8097. https://doi.org/10.24297/jam.v15i0.7945
Section
Editorial