New Oscillation Criteria for Second Order Neutral Type Dierence Equations

Main Article Content

M Angayarkanni

Abstract

In this paper, we present some new oscillation criteria for second order neutral type dierence equation of the form (an(zn)) + qnf(xn) = en; n n0 > 0; where zn = xn 􀀀pnxn􀀀l and is ratio of odd positive integers. Examples are provided to illustrate the results.

Article Details

How to Cite
ANGAYARKANNI, M. New Oscillation Criteria for Second Order Neutral Type Dierence Equations. JOURNAL OF ADVANCES IN MATHEMATICS, [S.l.], v. 13, n. 4, p. 7346-7353, oct. 2017. ISSN 2347-1921. Available at: <https://cirworld.com/index.php/jam/article/view/6290>. Date accessed: 23 oct. 2017. doi: https://doi.org/10.24297/jam.v13i4.6290.
Section
Articles

References

[1] R.P. Agarwal, Dierence Equations and Inequalities, Second Edition, Marcel Dekker,
New York, 2000.
[2] R.P. Agarwal, M. Bohner, S.R. Grace and D.'O. Regan, Discrete Oscillation Theory,
Hindawi Publ. Corp., New York, 2005.
[3] R.P. Agarwal, M.M.S. Manuel and E. Thandapani, Oscillatory and nonoscillatory be-
havior of second order delay dierence equations, Appl. Math. Lett., 10(2)(1997), 103-
109.
[4] J. Cheng, Existence of nonoscillatory solution of second order linear dierence equa-
tions, Appl. Math. Lett., 20(2007), 892-899.
[5] I. Gyori and G. Ladas, Oscillation Theory of Delay Dierential Equations with Appli-
cations, Clarendon Press, Oxford, 1991.
[6] R. Jankowski and E. Schmeidel, Almost oscillation criterca for second order neutral
dierence equations with quasi-dierences, International Journal of Dierence Equa-
tions, 9(1)(2014), 77-86.
[7] J. Jiang, Oscillation criteria for second order quasilinear neutral delay dierence equa-
tions, Appl. Math. Comput., 125(2002), 287-293.
[8] W.G. Kelley and A.C. Peterson, Dierence Equations: An Introduction with Applica-
tions, Acad. Press, New York, 1991.
[9] G. Ladas, Ch.G. Philos and Y.G. Sticas, Sharp condition for the oscillation of delay
dierence equations, J. Appl. Math. Simul., 2(2)(1989), 101-112.
[10] H.J. Li and C.C. Yeh, Oscillation criteria for second order neutral delay dierence
equations, Comput. Math. Appl., 36(1999), 123-132.
[11] E. Thandapani, J.R. Graef and P.W. Spikes, On the oscillation of second order quasi-
linear dierence equations, Nonlinear World, 3(1996), 545-565.
[12] E. Thandapani and K. Mahalingam, Oscillation and nonoscillation of second order
neutral dierence equations, Czechoslovak Math. J., 53(128)(2003), 935-947.
[13] E. Thandapani and S. Selvarangam, Oscillation theorems for second order nonlinear
neutral dierence equations, J. Math. Comput. Sci., 2(4)(2012), 866-879.
[14] E. Thandapani, S. Selvarangam, R. Rama and M. Madhan, Improved oscillation crite-
ria for second order nonlinear delay dierence equations with nonpositive neutral term,
Fasciculi Mathematici, 2016.