Moments of order statistics from nonidentically Distributed Lomax, exponential Lomax and exponential Pareto Variables

Nasr Ibrahim Rashwan
Faculty of Commerce – Tanta University, Egypt
nasrrashwan@yahoo.com

Abstract
In this paper, the probability density function and the cumulative distribution function of the rth order statistic arising from independent nonidentically distributed (INID) Lomax, exponential Lomax and exponential Pareto variables are presented. The moments of order statistics from INID Lomax, exponential lomax and exponential Pareto were derived using the technique established by Barakat and Abdelkader. Also, numerical examples are given.

Keywords
Moments of order statistics, nonidentically distributed order statistics, Lomax distribution, exponential Lomax distribution, exponential Pareto distribution.

1. Introduction
Three techniques have been established in literature to compute moments of order statistics of independent nonidentically distributed random variables. The first technique is created by Balakrishnan (1994). This technique requires a basic relation between to probability density function (pdf) and the cumulative distribution function (cdf) and referred to as differential equation technique (DET). Many authors used to this technique to derive the moments of INID order statistics for continuous distributions (See, Childs and Balakrishnan (2006) and Mohie Elidin et al (2007)).

Barakat and Abdelkader (2000) established the second technique to compute the moments of order statistics from nonidentically distributed weibull variables and referred to as (BAT). This technique that the cdf of the distribution can be written in the form $F(x) = 1 - 0(x)$, which is satisfied in this distribution. Many authors used to BAT technique to compute the moments of INID order statistics for several continuous distributions (more details, see Abdelkader (2004a) and Abdelkader (2004b), Jamjoom (2006), Abdelkader (2010), Jamjoom and Al-Saiary (2010) and Jamjoom and Al-Saiary (2013)).

The third technique was developed by Jamjoom and Al-Saiary (2011) which is the moment generating function technique. It depends on (BAT) and referred to as (M.G.F. BAT). The third technique was used by Al-Saiary (2015) to compute the moments of INID order statistics for standard type II generalized logistic variables.

In this paper the pdf and the cdf of the rth order statistic arising from INID Lomax, exponential Lomax and exponential Pareto distributions are given in section 2. In section 3, we drive the moments of the rth order statistics of INID random variables arising from Lomax, exponential Lomax and exponential Pareto using (BAT). Finally, some conclusions are addressed in section 4.

2. Nonidentical order statistics from Lomax, exponential Lomax and exponential Pareto distributions
Let $X_1, X_2, ..., X_n$ be independent random variables having cumulative distribution functions (cdfs) $F_1(x), ..., F_n(x)$ and probability density functions (pdfs) $f_1(x), f_2(x), ..., f_n(x)$, respectively. Let $x_{1:n} \leq ... \leq x_{n:n}$ denote the order statistics obtained by arranging the n values in increasing order of magnitude. Then the pdf of the rth order statistic $X_{r:n}$, $(1 \leq r \leq n)$, can be written as:

$$f_{r:n}(x) = \frac{1}{(r-1)! (n-r)!} \sum_{a=1}^{r-1} \prod_{i=1}^{a} F_{i}(x) \prod_{c=r+1}^{n} [1-F_{c}(x)]$$

(1)

Where \sum_{P} denotes the summation overall $n!$ permutations $(i_1, i_2, ..., i_n)$ of $(1,2,...,n)$ (See Bapat and Beg (1989)). Put the previous pdf of the rth order statistic $X_{r:n}$ in the form of permanent as:

$$f_{r:n}(x) = \frac{1}{(r-1)! (n-r)!} \text{Per} \left[\frac{F(x)}{r-1} \frac{F(x)}{i} \frac{(1-F(x))}{n-r} \right]$$
\[
\frac{1}{(r-1)! (n-r)!} \begin{vmatrix}
F_1(x) & F_2(x) & \cdots & F_n(x) \\
\vdots & \vdots & & \vdots \\
1-F_1(x) & 1-F_2(x) & \cdots & 1-F_n(x) \\
\end{vmatrix}^{(r-1) \text{ rows}}
\]
where \(F(x) \) and \([1 - F(x)] \) denote the column vectors \([F_1(x), F_2(x), \ldots, F_n(x)]^\top\) and \([1 - F_1(x), 1 - F_2(x), \ldots, 1 - F_n(x)]^\top\) respectively. So the \(F_{rn}(x) \) can be rewritten as

\[
F_{rn}(x) = \sum_{i=r}^{n} \frac{1}{i! (n-i)!} \text{Per} \left[\begin{bmatrix}
F_1(x) & 1-F_1(x) \\
F_2(x) & 1-F_2(x) \\
\vdots & \vdots \\
F_n(x) & 1-F_n(x) \\
\end{bmatrix} \right]^{(n-r) \text{ rows}}, -\infty < x < \infty
\]

The cdf of the smallest order statistic \((r = 1) X_{1n}\) is given by:

\[
F_{1n}(x) = \sum_{i=1}^{n} \frac{1}{i! (n-i)!} \text{Per} \left[\begin{bmatrix}
F_1(x) & 1-F_1(x) \\
F_2(x) & 1-F_2(x) \\
\vdots & \vdots \\
F_n(x) & 1-F_n(x) \\
\end{bmatrix} \right], -\infty < x < \infty
\]

and the cdf of the largest order statistic \((r = n) X_{nn}\) is given by:

\[
F_{nn}(x) = \frac{1}{n!} \begin{vmatrix}
F_1(x) \\
F_2(x) \\
\vdots \\
F_n(x) \\
\end{vmatrix}^{\top}, -\infty < x < \infty
\]

Note that the permanent is a square matrix, which is defined similar to the determinants except that all elements in the expansion have a positive sign (Minc (1987) and Balakrishnan (1994)).

In this paper, we consider the case where the random variables \(X_i, i = 1, 2, \ldots, n \) are independent and nonidentical having Lomax (L), exponential Lomax (EL) and exponential Pareto (EP) distributions with cdfs \(F_L(x) \), \(F_{EL}(x) \) and \(F_{EP}(x) \) and pdfs \(f_L(x) \), \(f_{EL}(x) \) and \(f_{EP}(x) \) respectively (more details see, Lemonte and Corderio (2013), Abdel Al-Kadim and Boshi (2013) and El-Bassiouny et al (2015)).
Where
\[F_{Li}(x) = 1 - (1 + \beta x)^{-\alpha_i}, \quad f_{Li}(x) = \beta \alpha_i (1 + \beta x)^{-(\alpha_i+1)}, \quad x > 0, \quad \alpha_i, \beta > 0 \] (6)
\[F_{ELi}(x) = 1 - e^{-\lambda_i (x + \beta)^{-\alpha}}, \quad f_{ELi}(x) = \frac{\alpha \lambda_i}{\beta} (\frac{\beta}{x + \beta})^{-(\alpha+1)} e^{-\lambda_i (x + \beta)^{-\alpha}}, \quad x > -\beta, \quad \alpha, \lambda_i > 0 \] (7)
\[F_{EPi}(x) = 1 - \frac{-\lambda_i (x + \beta)^{-\alpha}}{p}, \quad f_{EPi}(x) = \frac{\lambda_i}{p} (\frac{x + \beta}{p})^{0-1} e^{-\lambda_i (x + \beta)^{-\alpha}}, \quad x > 0, \quad 0, \quad p, \lambda_i > 0 \] (8)

3. The moment of the rth order statistics arising from INID Lomax, exponential lomax and exponential Pareto random variables

In this section, we drive the moments of order statistics from INID random variables arising from L, EL and EP. We need to follow theorem which is established by Barakat and Abdelkader (2003).

Theorem 1: Let \(X_1, X_2, \ldots, X_n \) be independent nonidentically distribution random variables, The \(k \)th moment of order statistics for \(1 \leq r \leq n \) and \(k = 1, 2, \ldots \) is given by:

\[\mu_{1n}^{(k)} = \sum_{j=1}^{n} \sum_{n-1}^{j} \frac{(-1)^{j-n}}{j!} \binom{n}{j} I_j(k) \] (9)

Where
\[I_j(k) = \sum_{l \leq i_1 < i_2 < \ldots < i_j \leq n} \sum_{t=1}^{k} k \int_{0}^{x} \prod_{l=1}^{j} G_{i_l}(x) \, dx, \quad j = 1, 2, \ldots, n. \] (10)

\[G_{i_l}(x) = 1 - F_{i_l}(x) \] with \((i_1, i_2, \ldots, i_n) \) are permutations of \((1, 2, \ldots, n) \) for which \(i_1 < i_2 < \ldots < i_n \). The proof of this Theorem 1 see to Barakat and Abdelkader (2003).

3.1. Moments of order statistics from INID Lomax random variables

The following Theorem gives an explicit expression for \(I_j(k) \) when \(X_1, X_2, \ldots, X_n \) are INID Lomax random variables.

Theorem 2: for \(1 \leq r \leq n \) and \(k = 1, 2, \ldots \)

\[I_j(k) = \frac{k}{\beta} \sum_{l \leq i_1 < i_2 < \ldots < i_j \leq n} \sum_{t=1}^{k} B(k, \sum_{l=1}^{j} \alpha_{i_l} - k) \] (11)

Where \(B(\cdot, \cdot) \) is the complete beta function

Proof: on applying Theorem 1 and using eq. (10), we get

\[I_j(k) = \sum_{l \leq i_1 < i_2 < \ldots < i_j \leq n} \sum_{t=1}^{k} k \int_{0}^{x} \prod_{l=1}^{j} [1 - F_{Li}(x)] \] (12)
By using the known relation \(B(p, q) \int_0^\infty \frac{x^{p-1}}{(1+x)^{p+q}} \), then
\[
\int_0^{\infty} \frac{(\beta x)^{k-1}}{(1+\beta x)^{\sum_{t=1}^n \alpha_t-k}} dx = B[k, \sum_{t=1}^n \alpha_t] \tag{13}
\]

By substituting eq. (13) in eq. (12), we get Theorem 2.

Result 1: Substituting eq. (11) in eq. (9), The \(k \)th moments of the \(r \)th order statistics from INID Lomax distribution can be written as:
\[
\mu_{rn}^{(k)} = \sum_{j=r+1}^{n} (-1)^{j-r} \left(\begin{array}{c} j-1 \\ n-r \\ \end{array} \right) \frac{k}{\beta^{k-1}} \frac{\sum_{1 \leq i_1 < i_2 < \ldots < i_j \leq n} B[k, \sum_{t=1}^j \alpha_{i_t}] - k}{\sum_{1 \leq i_1 < i_2 < \ldots < i_j \leq n} B[k, \sum_{t=1}^j \alpha_{i_t}] - k} \tag{14}
\]

Also, we can obtain the \(k \)th moment of the smallest order statistic \(x_{1:n} \) and the largest order statistic \(x_{n:n} \) from INID Lomax as follows:
\[
\mu_{1n}^{(k)} = \frac{k}{\beta^{k-1}} B[k, \sum_{i=1}^n \alpha_{i}] - k \tag{15}
\]
and
\[
\mu_{nn}^{(k)} = \sum_{j=1}^{n} (-1)^{j-1} \frac{\sum_{1 \leq i_1 < i_2 < \ldots < i_j \leq n} B[k, \sum_{t=1}^j \alpha_{i_t}] - k}{\sum_{1 \leq i_1 < i_2 < \ldots < i_j \leq n} B[k, \sum_{t=1}^j \alpha_{i_t}] - k} \tag{16}
\]

Example (1)
Let \(n = 3 \), \(X_1 \sim \text{Lomax} (\beta = 2, \alpha_1 = 3) \), \(X_2 \sim \text{Lomax} (\beta = 2, \alpha_2 = 3) \) and \(X_3 \sim \text{Lomax} (\beta = 2, \alpha_3 = 4) \). When \(k = 1 \), then

Using eq. (15)
\[
\mu_{13} = B(1, \sum_{i=1}^n \alpha_i) = B(1, \alpha_1 + \alpha_2 + \alpha_3) = 0.11111
\]

Using eq. (14)
\[
\mu_{23} = \sum_{j=2}^{3} (-1)^{j-2} \left(\begin{array}{c} j-1 \\ 1 \\ \end{array} \right) I_j(1) = I_2(1) - 2 I_3(1)
\]

\[
=[B(1, \alpha_1 + \alpha_2) - 1] + B(1, \alpha_1 + \alpha_3 - 1) + B(1, \alpha_2 + \alpha_3 - 1) - 2 B(1, \alpha_1 + \alpha_2 + \alpha_3 - 1) = 0.3111
\]

and using eq. (16)
\[
\mu_{33} = \sum_{j=3}^{3} (-1)^{j-1} I_j(1) = I_1(1) - I_2(1) + I_3(1) = 0.9111
\]

Where \(I_1(1) = B(1, \alpha_1 - 1) + B(1, \alpha_2 - 1) + B(1, \alpha_3 - 1) \)

3.2. Moments of order statistic from INID exponential Lomax random variables

Theorem 3: for \(1 \leq r \leq n \) and \(k = 1, 2, \ldots, \)
\[
I_j(k) = \sum_{1 \leq i_1 < i_2 < \ldots < i_j \leq n} \sum_{L=0}^{k-j} \frac{\Gamma\left(\frac{k-L}{\alpha}\right)}{\Gamma\left(\frac{k}{\alpha}\right)} (-1)^{j-1} \left(\begin{array}{c} j-1 \\ L \\ \end{array} \right) \left(\sum_{i=1}^{L} \lambda_{i} \right) \left(\sum_{i=1}^{L+1} \lambda_{i} \right) \tag{17}
\]

Proof: By using Theorem 1 and eq. (10), then
\[
I_j(k) = \sum_{1 \leq i_1 < i_2 < \ldots < i_j \leq n} k \int_{-\beta}^{\infty} x^{k-1} \prod_{t=1}^{j} [1-F_{\lambda_{i_t}}(x)] dx
\]
\[
= \sum_{1 \leq i_1 < i_2 < \ldots < i_j \leq n} k \int_{-\beta}^{\infty} x^{k-1} e^{-\left(\frac{\beta}{x+\beta} \right) \sum_{i=1}^{L+1} \lambda_{i}} \sum_{i=1}^{L} \lambda_{i} \]
Let $y = \left(\frac{\beta}{x+\beta}\right)^{\alpha}$, $y(-\beta) = 0$, $y(\infty) = \infty$, $x = \beta(y^{\alpha} - 1)$ and $dx = \frac{\beta}{\alpha} y^{\frac{1}{\alpha} - 1} dy$, then

$$I_j(k) = \sum_{1 \leq i_1 < i_2 < \ldots < i_j \leq n} \frac{k \beta^k}{\alpha} \sum_{L=0}^{k-1} (-1)^L \left(\frac{k-1}{L}\right)^L \Gamma\left(\frac{k-L}{\alpha}\right) \frac{\sum_{i=1}^{j} \lambda_{i}}{\sum_{i=1}^{n} \lambda_{i}}^\frac{k-1}{L}$$

Result 2: Substituting eq.(17) in eq.(9), the k^{th} moments of the r^{th} order statistics from INID exponential Lomax can be written as:

$$\mu_{r,s}^{(k)} = \sum_{j=r}^{n} \binom{n-j}{r-1} (-1)^{j-r} \sum_{1 \leq i_1 < i_2 < \ldots < i_j \leq n} \frac{k \beta^k}{\alpha} \sum_{L=0}^{k-1} (-1)^L \left(\frac{k-1}{L}\right)^L \Gamma\left(\frac{k-L}{\alpha}\right) \frac{\sum_{i=1}^{j} \lambda_{i}}{\sum_{i=1}^{n} \lambda_{i}}^\frac{k-1}{L}$$

(18)

Also, the k^{th} moment of the smallest order statistic $x_{1,n}$ from INID exponential Lomax random variables can be written as:

$$\mu_{1,n}^{(k)} = \frac{k \beta^k}{\alpha} \sum_{L=0}^{k-1} (-1)^L \left(\frac{k-1}{L}\right)^L \Gamma\left(\frac{k-L}{\alpha}\right) \frac{\sum_{i=1}^{n} \lambda_{i}}{\sum_{i=1}^{n} \lambda_{i}}^\frac{k-1}{L}$$

(19)

and the k^{th} moment of the largest order statistic $x_{n,n}$ from INID exponential Lomax random variables can be written as:

$$\mu_{n,n}^{(k)} = \sum_{j=1}^{n} (-1)^{j-1} \sum_{1 \leq i_1 < i_2 < \ldots < i_j \leq n} \frac{k \beta^k}{\alpha} \sum_{L=0}^{k-1} (-1)^L \left(\frac{k-1}{L}\right)^L \Gamma\left(\frac{k-L}{\alpha}\right) \frac{\sum_{i=1}^{j} \lambda_{i}}{\sum_{i=1}^{n} \lambda_{i}}^\frac{k-1}{L}$$

(20)

Example (2)

Let $n = 3$, $X_1 \sim \text{EL} (\beta = 3, \alpha = 2, \lambda_1 = 1)$, $X_2 \sim \text{EL} (\beta = 3, \alpha = 2, \lambda_2 = 2)$ and $X_3 \sim \text{EL} (\beta = 3, \alpha = 2, \lambda_3 = 3)$, when $k = 1$, then

Using eq. (19)

$$\mu_{1,3} = \frac{2}{3} \frac{\Gamma(0.5)}{\left(\frac{3}{\lambda_1}\right)^{0.5}} = 1.0853$$

Using eq. (18),

$$\mu_{2,3} = I_2(1) - 2 I_3(1) = 1.8817$$

Where

$$I_2(1) = \frac{2}{3} \Gamma(0.5) \left[\frac{1}{(\lambda_1 + \lambda_2)^{0.5}} + \frac{1}{(\lambda_1 + \lambda_3)^{0.5}} + \frac{1}{(\lambda_2 + \lambda_3)^{0.5}}\right] = 4.0524$$

and

$$I_{1,3}^{(0.5)} = \frac{2}{3} \left(\frac{\Gamma(0.5)}{(\lambda_1 + \lambda_2 + \lambda_3)^{0.5}}\right)^{0.5} = 1.0853$$

Jannany 2018
and using eq. (20),
\[\mu_{3.3} = I_1 (1) - I_2 (1) + I_3 (1) = 3.1053 \]

Where
\[I_1 (l) = \frac{3}{2} \Gamma (\frac{5}{2}) \left[\frac{1}{\lambda_1} \frac{1}{\lambda_2} + \frac{1}{\lambda_3} \right] = 6.0724 \]

3.3. Moments of order statistics from INID exponential Pareto random variables

Theorem 4: for 1 ≤ r ≤ n and k = 1, 2, ...,
\[I_j (k) = \sum_{1 \leq i_1 < i_2 < ... < i_j \leq n} \sum_{1 \leq i_1 < i_2 < ... < i_j \leq n} \frac{k^k}{\theta^k} \frac{\Gamma \left(\frac{k}{\theta} \right)}{\left(\sum_{i=1}^{j} \lambda_i \right)^{\frac{k}{\theta}}} \]

(21)

Proof: on applying Theorem 1 and using eq.(10), Then
\[I_j (k) = \sum_{1 \leq i_1 < i_2 < ... < i_j \leq n} \sum_{1 \leq i_1 < i_2 < ... < i_j \leq n} \frac{k^k}{\theta^k} \frac{\Gamma \left(\frac{k}{\theta} \right)}{\left(\sum_{i=1}^{j} \lambda_i \right)^{\frac{k}{\theta}}} \]

Result 3: Substituting eq.(21) in eq.(9), the kth moments of the rth order statistic from INID exponential Pareto random variables can be written as:
\[\mu_{r,n}^{(k)} = \sum_{j=r+1}^{n} (-1)^{j-(r+1)} \sum_{1 \leq i_1 < i_2 < ... < i_j \leq n} \frac{k^k}{\theta^k} \frac{\Gamma \left(\frac{k}{\theta} \right)}{\left(\sum_{i=1}^{j} \lambda_i \right)^{\frac{k}{\theta}}} \]

(22)

Also, we can obtain the kth moment of x_{1:n} and x_{n:n} from INID exponential Pareto as follows:
\[\mu_{1:n}^{(k)} = \frac{k^k}{\theta^k} \frac{\Gamma \left(\frac{k}{\theta} \right)}{\left(\sum_{i=1}^{j} \lambda_i \right)^{\frac{k}{\theta}}} \]

(23)

and
\[\mu_{n:n}^{(k)} = \sum_{j=1}^{n} (-1)^{j-1} \sum_{1 \leq i_1 < i_2 < ... < i_j \leq n} \frac{k^k}{\theta^k} \frac{\Gamma \left(\frac{k}{\theta} \right)}{\left(\sum_{i=1}^{j} \lambda_i \right)^{\frac{k}{\theta}}} \]

(24)
Example (3)

Let \(n = 5 \), \(X_1 \sim EP (P = 2, \, \theta = 1, \, \lambda_1 = 1) \), \(X_2 \sim EP (P = 2, \, \theta = 1, \, \lambda_2 = 2) \), \(X_3 \sim EP (P = 2, \, \theta = 1, \, \lambda_3 = 3) \), \(X_4 \sim EP (P = 2, \, \theta = 1, \, \lambda_4 = 4) \) and
\(X_5 \sim EP (P = 2, \, \theta = 1, \, \lambda_5 = 5) \). when \(k = 1 \), then

Using eq. (23)

\[
\mu_{15} = \frac{\Gamma(1)}{\sum_{i=1}^{3} \lambda_i} = 0.1333
\]

Using eq. (22)

\[
\mu_{25} = \sum_{j=4}^{5} (-1)^{j-4}(j-1) \frac{\Gamma(1)}{I_j} = I_4(1) - 4 \cdot I_5(1) = 0.3119
\]

Where

\[
I_4(1) = 2 \left[\frac{\Gamma(1)}{\lambda_1 + \lambda_2 + \lambda_3 + \lambda_4} + \frac{\Gamma(1)}{\lambda_1 + \lambda_2 + \lambda_3 + \lambda_5} + \frac{\Gamma(1)}{\lambda_1 + \lambda_2 + \lambda_4 + \lambda_5} + \frac{\Gamma(1)}{\lambda_1 + \lambda_3 + \lambda_4 + \lambda_5} + \frac{\Gamma(1)}{\lambda_2 + \lambda_3 + \lambda_4 + \lambda_5} \right] = 0.8451 \quad \text{and}
\]

\[
I_5(1) = 2 \left[\frac{\Gamma(1)}{\lambda_1 + \lambda_2 + \lambda_3 + \lambda_4 + \lambda_5} \right] = 0.1333
\]

and using eq. (24)

\[
\mu_{55} = \sum_{j=1}^{5} (-1)^{j-1} I_j(1) = I_1(1) - I_2(1) + I_3(1) - I_4(1) + I_5(1) = 0.6969
\]

Where for example. When \(n = 5 \), then

\[
I_2(k) = \frac{k p^k}{\theta} \left[\sum_{1 \leq i_1 < i_2 \leq 5} \frac{\Gamma(k)}{\theta} \left(\sum_{i=1}^{2} \lambda_{i1} \right)^{(k/\theta)} \right] = \frac{k p^k}{\theta} \left[\frac{1}{(\lambda_1 + \lambda_2)^{(k/\theta)}} + \frac{1}{(\lambda_1 + \lambda_3)^{(k/\theta)}} + \frac{1}{(\lambda_1 + \lambda_4)^{(k/\theta)}} + \frac{1}{(\lambda_1 + \lambda_5)^{(k/\theta)}} + \frac{1}{(\lambda_2 + \lambda_3)^{(k/\theta)}} + \frac{1}{(\lambda_2 + \lambda_4)^{(k/\theta)}} + \frac{1}{(\lambda_2 + \lambda_5)^{(k/\theta)}} + \frac{1}{(\lambda_3 + \lambda_4)^{(k/\theta)}} + \frac{1}{(\lambda_3 + \lambda_5)^{(k/\theta)}} + \frac{1}{(\lambda_4 + \lambda_5)^{(k/\theta)}} \right]
\]

4. Conclusion

In this paper, exact moments of the \(r \)th order statistic form independent and nonidentically distributed random variables for the Lomax, exponential Lomax and exponential Pareto distribution are derived using the BAT technique. Some numerical examples are presented to illustrate the theorems and results of this study.

References

