LIQUID-LIQUID EXTRACTION-SPECTROPHOTOMETRIC DETERMINATION OF MOLYBDENUM USING o-HYDROXYTHIOPHENOLS

  • Ali Z. Zalov Department of Analytical Chemistry, Azerbaijan State Pedagogical University, 34 Gadzhibekova St., Baku 1000
  • Kiril Blazhev Gavazov University of Plovdiv "Paissii Hilendarski"
Keywords: Molybdenum(V), solvent extraction, ternary complex, soil analysis, plant analysis, linear relationship

Abstract

27 liquid-liquid extraction-chromogenic systems containing Mo(VI), o-hydroxythiophenol derivative {HTPDs: 2-hydroxy-5-chlorothiophenol (HCTP), 2-hydroxy-5-bromothiophenol (HBTP) or 2-hydroxy-5-iodothiophenol (HITP)} and aromatic amine (AA) were studied. Aniline (An), N-methylaniline (mAn), N,N-dimethylaniline (dAn), o-toluidine (o-Tol), m-toluidine (m-Tol), p-toluidine (p-Tol), 3,4-xylidine (o-Xyl), 2,4-xylidine (m-Xyl), and 2,5-xylidine (p-Xyl) were the examined AAs. Optimization experiments for molybdenum extraction-spectrophotometric determination were performed and the following parameters were found for each of the systems: organic solvent (opt), pH (opt), CHTPD (opt), CAA (opt), shaking time (opt), l (max) and e (max). Under the optimum conditions, the molar ratio of the reacting Mo(V), HTPD and AA was 1:2:2 and the degrees of Mo extraction were R³98.4%. Linear relationships involving the spectral characteristics of the extracted complexes (lmax or emax) and some fundamental properties of the halogen substituent in the HTPD were discussed. The effect of foreign ions was examined and two sensitive, selective and precise procedures for extraction-spectrophotometric determination of molybdenum were proposed. The relative standard deviations for Mo content of (3-5)´10–4 mass % were 4% (HCTP-An procedure) and 3% (HBTP-An procedure).

Downloads

Download data is not yet available.

References

[1] Gupta U. C. (Ed.). 1997. Molybdenum in agriculture. Cambridge University Press, Cambridge.
[2] Anke, M., Seifert, M., Arnhold, W., Anke, S., and Schäfer, U. 2010. The biological and toxicological importance of molybdenum in the environment and in the nutrition of plants, animals and man. Acta aliment. 39(1), 12-26.
[3] Smedley, P. L., Cooper, D. M., Ander, E. L., Milne, C. J., and Lapworth, D. J. 2014. Occurrence of molybdenum in British surface water and groundwater: Distributions, controls and implications for water supply. Appl. Geochem. 40(0), 144-154.
[4] Momčilović, B. 1999. A case report of acute human molybdenum toxicity from a dietary molybdenum supplement a new member of the “lucor metallicum” family. Arhiv za higijenu rada i toksikologiju 50(3), 289-297.
[5] Das, A. K., Chakraborty, R., Cervera, M. L., and de la Guardia, M. 2007. A review on molybdenum determination in solid geological samples. Talanta 71(3), 987-1000.
[6] Kabata-Pendias, A. 2011. Trace elements in soils and plants (4th ed.). CRC press, Boca Raton. pp. 190-198.
[7] Kaiser, B. N., Gridley, K. L., Brady, J. N., Phillips, T., and Tyerman, S. D. (2005). The role of molybdenum in agricultural plant production. Ann. Bot. 96(5), 745-754.
[8] Gupta, U. C. and Hettiarachchi, G. M. 2007. Boron, Molybdenum, and Selenium. In Soil sampling and methods of analysis (2nd edition), M. R. Carter, E. G. Gregorich (Eds.) Boca Raton, p. 99.
[9] Kostova, D. 2011. Triphenyltetrazolium chloride as a new analytical reagent for molybdenum(VI): Application to plant analysis. J. Anal. Chem. 66(4), 384-388.
[10] Deng, P., Fei, J., Zhang, J., and Feng, Y. 2011. Determination of molybdenum by adsorptive anodic stripping voltammetry of molybdenum–alizarin violet complex at an acetylene black paste electrode. Food Chem. 124(3), 1231-1237.
[11] Khan, N., Jeong, I. S., Hwang, I. M., Kim, J. S., Choi, S. H., Nho, E. Y., Choi, J. Y., Kwak, B.- M., Ahn, J.- H., Yoon, T. and Kim, K. S. 2013. Method validation for simultaneous determination of chromium, molybdenum and selenium in infant formulas by ICP-OES and ICP-MS. Food Chem. 141(4), 3566-3570.
[12] Gürkan, R., Aksoy, Ü., Ulusoy, H. İ., and Akçay, M. 2013. Determination of low levels of molybdenum (VI) in food samples and beverages by cloud point extraction coupled with flame atomic absorption spectrometry. J. Food Compos. Anal. 32(1), 74-82.
[13] Mansouri, A. I., Afzali, D., and Ganjavi, F. 2013. Dispersive liquid–liquid microextraction of trace amounts of molybdenum prior to electro-thermal atomic absorption spectrometry determination. Int. J. Environ. Anal. Chem. 94(3), 247-254.
[14] Bazán, C., Gil, R., Smichowski, P., and Pacheco, P. 2014. Multivariate optimization of a solid phase extraction system employing l-tyrosine immobilized on carbon nanotubes applied to molybdenum analysis by inductively coupled plasma optical emission spectrometry with ultrasound nebulization. Microchem. J. 117, 40-45.
[15] Dass, R., Kapoor, J. K., and Gambhir, S. 2014. Spectrophotometric determination of molybdenum using surfactant-mediated liquid--liquid extraction. Turk. J. Chem. 38(2), 328-337.
[16] Filik, H., Tütem, E., and Apak, R. 2004. Use of the molybdenum–thiocyanate–rhodamine 6G ternary complex for spectrophotometric molybdenum determination without extraction. Anal. Chim. Acta 505(1), 77-82.
[17] Dimitrov, A., Lekova, V., Gavazov, K., and Boyanov, B. 2005. Investigation of the extraction equilibrium of ion-association complexes of molybdenum(VI) with some polyphenols and thiazolyl blue. Extraction-spectrophotometric determination of molybdenum. Cent. Eur. J. Chem. 3(4), 747-755.
[18] Pyrzynska, K. 2007. Determination of molybdenum in environmental samples. Anal. Chim. Acta 590(1), 40-48.
[19] Dimitrov, A., Lekova, V., Gavazov, K., and Boyanov, B. 2007. Ternary complex of molybdenum(VI) with 4-nitrocatechol and tetrazolium blue chloride and its application to extraction-spectrophotometric analysis of ferrous metallurgy products. J. Anal. Chem., 62(2), 122-125.
[20] Gavazov, K. B., Dimitrov, A. N., and Lekova, V. D. 2007. The use of tetrazolium salts in inorganic analysis. Russ. Chem. Rev. 76(2), 169-179.
[21] Kamburova, M., and Kostova, D. 2008. Tetrazolium violet – a new spectrophotometric reagent for molybdenum determination. Chemija 19(2), 13-18.
[22] Shrivas, K., Agrawal, K., and Harmukh, N. 2009. Trace level determination of molybdenum in environmental and biological samples using surfactant-mediated liquid–liquid extraction. J. Hazard. Mat. 161(1), 325-329.
[23] Abdessalam, S., Nabieva, A. M., Nabiev, M., and Hamada, B. 2009. Extraction-spectrophotometric method of determining molybdenum by dibenzo-18-crown-6. Azerbaijan J. Chem. 4, 158-162.
[24] Abdessalam, S., Ramazanova, G. G., Gahramanova, Z. O., Shabanov, A. L., and Nabiev, M. 2010. Spectrophotometric determination of Mo(VI) and Co(II) with simultaneous presence of crown ether (6-hydroxy-dibenzo-19-crown-6) in differemt drug forms. Kimya Problemleri 4, 668-673.
[25] Verdizade, N., Amrakhov, T. I., Kuliev, K. A., and Zalov, A. Z. 1997. 2-Hydroxy-5-chlorothiophenol (HCTP) as new analytical reagent for determination of V(V), Mo and W. Zh. Anal. Khim. 52(10), 1042-1046.
[26] Verdizade, N. A., Zalov, A. Z., Kuliev, K. A., Amrakhov, T. A., and Samedova, V. M. 2000. Extraction-photometric determination of molybdenum as a mixed-ligand complex with 2-hydroxy-5-chlorothiophenol and diphenylguanidine. J. Anal. Chem. 55(4), 331-334.
[27] Zalov, A., Verdizade, N. A., and Abaskulieva, U. B. 2012. Extraction-photometric determination of titanium(IV) with thiophenol hydroxyhalogen derivatives and aminophenols. Izv. Vyssh. Uchebn. Zaved. Ser. Khim. Khim. Tekhnol. 55(10), 23-29.
[28] Zalov, A. Z., and Verdizade, N. A. 2013. Extraction-spectrophotometry determination of tungsten with 2-hydroxy-5-chlorothiophenol and hydrophobic amines. J. Anal. Chem. 68(3), 212-217.
[29] Zalov, A. Z., and Gavazov, K. B. 2014. Extractive spectrophotometric determination of nickel with 2-hydroxy-5-iodothiophenol and diphenylguanidine. Chem. J. 4(5), 20-25.
[30] Kuliev, A. M., Aliev, S. R., Mamedov, F. N., & Movsumzade, M. 1976. Synthesis of aminomethyl derivatives of 2-hydroxy-5-tert-alkylthiophenols and their cleavage by thiols. Zh. Org. Khim. 12(2), 426-431.
[31] Mineev, V. G. (Ed.). 2001. Praktikum po agrokhimii (2-nd edition). Izd. Mosk. Gos. Univ., Moscow.
[32] Grigg, J. L. 1953. Determination of the available molybdenum of soils. New Zealand J. Sci. Tech. 34, 405-414.
[33] A. Z. Zalov, K. B. Gavazov, “Kompleksoobrazuvane i ekstraktiya na volfram s 2-hidroksi-5-bromotiofenol i aminofenoli”, Nauch. Tr. Plovdiv Univ. Khim., 2014, in press. [34] Sommer, L., and Bartusek, M. 1966. Complexation of phenolic hydroxyl and its analytical consequences. Folia Fac. Sci. Nat. UJEP Brno Chem. 7(5), 46-63.
[35] Bulatov, M. I., and Kalinkin, I. P. 1986. Prakticheskoe rukovodstvo po fotokolorimetricheskim i spektrofotometricheskim metodam analiza. Khimiya, Leningrad.
[36] Asmus, E. 1960. Eine neue Methode zur Ermittlung der Zusammensetzung schwacher Komplexe. Fresenius' J. Anal. Chem. 178(2), 104-116.
[37] Nazarenko, V. A., and Biryuk, E. A. 1967. A study of the chemistry of reactions of multivalent element ions with organic reagents. Zh. Anal. Khim., 22(1), 57-64.
[38] Alexandrov, A., Simeonova, Z., and Kamburova, M. 1990. A relationship between association constants and the molecular mass of tetrazolium ion association complexes. Bulg. Chem. Commun. 23(4), 542-544.
[39] Gavazov, K., Lekova, V., Boyanov, B., and Dimitrov, A. 2009. Some tetrazolium salts and their ion-association complexes with the molybdenum(VI) - 4-nitrocatechol anionic chelate. DTA and TGA study. J. Therm. Anal. Cal. 96(1), 249-254.
[40] Gavazov, K. B., Stefanova, T. S., and Toncheva, G. K. 2014. Extraction-spectrophotometric studies on the complex formation of iron(III) with 4-(2-thiazolylazo)resorcinol and tetrazolium salts. J. Advanc. Chem. 10(3), 2491-2501.
Published
2017-04-24
How to Cite
Zalov, A. Z., & Gavazov, K. (2017). LIQUID-LIQUID EXTRACTION-SPECTROPHOTOMETRIC DETERMINATION OF MOLYBDENUM USING o-HYDROXYTHIOPHENOLS. JOURNAL OF ADVANCES IN CHEMISTRY, 10(8), 3003-3011. https://doi.org/10.24297/jac.v10i8.6687
Section
Articles