From the Efficiency of Berlese Tullgren Funnel to the Spatiotemporal Variation of Two Uropodina Genera, Afrotrachytes Kontschán, 2006 and Trachyuropoda Berlese, 1888 (Acari, Mesostigmata) in Côte d’Ivoire

  • Dr. NDRI Kouadio Julien Université Nangui Abrogoua
  • Arnauth M. Guaci
  • Thierry Hance
  • Joseph G. Yaco
  • Jean-Luc D.S. Ahui
  • Henri M. Andrac
Keywords: Uropodina, Abundance, Distribution, Abiotic Factors, Primary Forest, Savannah, Teak Plantation


Due to their interaction with many other small Arthropods, Uropodina mites can be considered as good indicators of soil fauna of forest litter. In order, to better understand their distribution and phenology according to forest type four sites from primary forest to plantations were sampled in 2008 in Côte d’Ivoire: 1- the Lamto savannah (6°13' N, 5°02' W), 2- Oumé primary forest (6°31’ N, 5°30’ W), 3- Oumé teak plantation (6°31’ N, 5°30’ W) all situated in the Sudanese domain and finally, 4- the Taï primary forest (5°45’ N, 7°07 W) located in the Guinean domain. After a preliminary study devoted to the efficiency of Berlese Tullgren funnel, the spatiotemporal variation of two Uropodina genera - Afrotrachytes Kontschán, 2006 and Trachyuropoda Berlese, 1888 - was assessed. We hypothesized that the abundance of Uropodina would be higher in primary forest and lower in savannah and monospecific plantation. Whatever the season, we expected that the abundance of Uropodina would decrease with soil depth and would vary along transect. On each site, 15 sampling points were allocated over a 14-m transect with 1m intervals between two consecutive points. For each sampling point, 9 cores (litter, 0-5, 5-10, 10-15, 15-20, 20-25, 25-30, 30-35 and 35-40 cm) were taken with a steel corer (Ø 3.5 cm). Thus, a total of 1,080 soil cores were collected over two sampling periods from January to March 2008 (dry season) and August to October 2008 (rainy season). Soil physico-chemical parameters were also characterized. Mites were extracted using the Berlese-Tullgren funnels for one week after testing the extraction duration in a preliminary study. The bulbs lighting as soon as the soil cores were placed in Berlese Tullgren gave better results regarding the abundance of extracted mites. The results showed that the abundance of Afrotrachytes sp and Trachyuropoda sp was higher in rainy season, and varied significantly through the sites, whatever the season. The highest abundances of Afrotrachytes sp were observed in Oumé primary forest whereas those of Trachyuropoda sp were recorded in Oumé primary forest, and in Lamto savannah, whatever the season. Apart from the distribution of Trachyuropoda sp in dry season, the abundance of Afrotrachytes sp and Trachyuropoda sp was greater in the topsoil (litter and 0-5 cm) and decreased with soil depth. The abundances of Afrotrachytes sp and Trachyuropoda sp did not follow a normal distribution along the transects. The season-soil depth interaction affected significantly the abundance of Trachyuropoda sp whereas the bulk density (dry season and rainy season), soil depth (dry season), carbon / nitrogen ratio (dry season) impacted significantly the abundance of Afrotrachytes sp. This first study highlighted the spatiotemporal variation of Uropodina in Côte d’Ivoire. However, taking into account of the different dispersal agents in future studies would help us to better understand their abundance and distribution along different habitats, as well as their role as biological control agents.


Download data is not yet available.

Author Biography

Dr. NDRI Kouadio Julien, Université Nangui Abrogoua
Ecology and Ecosystem Management UFR-SN / Ecology Research Centre Université Nangui Abrogoua 02 BP 801 Abidjan 02 Côte d'Ivoire, cel +225 07 49 38 08


Anderson J.M. and Ingram J.S.I. 1993. Tropical soil biology and fertility: a handbook of methods, 2nd edn. CABI, Wallingford

André H.M. and Noti M-I. 1993. Extracting sand microarthropods: a carbon tetrachloride flotation method. Eur. J. Soil Biol., 29: 91–96.

André H.M., Ducarme X. and Lebrun Ph. 2002. Soil biodiversity: myth, reality or conning? Oikos, 96: 3–24.

Assié K.H., Angui P. and Tamia A.J. 2008. Effets de la mise en culture et des contraintes naturelles sur quelques propriétés physiques d’un sol ferrallitique au Centre Ouest de la Côte d’Ivoire: Conséquences sur la dégradation des sols. Eur. J. Sci. Res., 23: 149–166.

Avenard J-M. 1971. Aspect de la géomorphologie. In: Le milieu naturel de la Côte-d'Ivoire, Mémoires ORSTOM, 50: 70–72.

Baize D. 1988. Guide des analyses courantes en pédologie. INRA Éditions, Paris, France.

Barberena-Arias M.F., Gonzales G. and Cuevas E. 2012. Quantifying variation of soil arthropods using different sampling protocols: is diversity affected? In: Tropical Forests. Sudarshana P. (ed), pp. 51–70. InTech, Rijeka, Croatia

Bardgett R.D. 2005. The biology of soil. A community and ecosystem approach. Oxford University Press, Oxford, UK

Barot S. 1999. Interactions entre répartition spatiale, hétérogénéité environnementale et démographie : cas du palmier Rônier dans une savane humide de Côte d'Ivoire. Ecologie. PhD Dissertation. Université de Paris 6, France

?ejka M. and Holuša J. 2014. Phoretic mites in uni- and bivoltine populations of Ips typographus: a 1-year case study. Turk. J. Zool., 38: 569–574.

Coleman D.C., Crossley D.A.Jr. and Hendrix P.F. 2004. Fundamentals of soil ecology, 2nd (ed). Elsevier Academic Press, Burlington, New York

De Deyn G.B., Raaijmakers C.E., Van Ruijven J., Berendse F. and Van der Putten W.H. 2004. Plant species identity and diversity effects on different trophic levels of nematodes in the soil food web. Oikos, 106: 576–586.

Duchaufour P. 1991. Abrégés de pédologie. Sol, végétation, environnement (3ème éd.). Masson, Paris, France.

Duyar A. and Makineci E. 2016. Seasonal and altitudinal variations of soil arthropods in Abies nordmanniana subsp. bornmulleriana forests. Bosque, 37(2): 335–345.

Forsslund K-H. 1948. Något om insamlingsmetodiken vid markfaunaundersökningar. Medd. Statens Skogforskningsinst, 37(7): 1–22.

Gwiazdowicz D.J., Kamczyc J. and B?oszyk J. 2011. The diversity of phoretic Mesostigmata on Ips typographus (Coleoptera: Scolytinae) caught in the Karkonosze forest. Eur. J. Entomol., 108: 489–491.

Huhta V. and Hänninen S-M. 2001. Effects of temperature and moisture fluctuations on an experimental soil microarthropod community. Pedobiologia, 45: 279–286.

Kaczmarek S., Marquardt T., Fale?czyk-Koziróg K. and Marcysiak K. 2012. Diversity of soil mite communities (Acari) within habitats seasonally flooded by the Vistula River (Ostromecko, Poland). Biological Lett, 49(2): 97–105.

Kamczyc J., Gwiazdowicz D.J., Teodorowicz E. and Strzymi?ska K. 2014. Mites (Acari, Mesostigmata) in boreal Scots pine forest floors: effect of distance to stumps. Exp. Appl. Acarol., 64: 61–71.

Kamczyc J., Pers-Kamczyc E., Watral P., Soko?owski J. and Bu?aj B. 2017. To what extent do pine and oak clear-cut stumps support mite (Acari: Mesostigmata) communities in temperate forests? Turk. J. Zool., doi:10.3906/zoo-1606-35.

Kazemi S. and Abolghasemi S. 2016. New species and records of Uropodina mites from Iran (Acari, Mesostigmata). ZooKeys, 600: 25–34.

Koné A.W., Edoukou E.F., Orendo-Smith R. and Tondoh J. E. 2012. Earthworms in Chromolaena odorata (L.) King and Robinson (Asteraceae) fallows along a chronosequence: Changes in community structure and identification of persistent and indicator species. Pedobiologia, 55: 193–201.

Kontschán J. 2006a. Uropodina (Acari: Mesostigmata) species from Angola. Acta Zoologica Academiae Scientiarum Hungaricae, 52(1): 1–20.

Kontschán J. 2006b. Uropodina mites of East Africa (Acari: Mesostigmata) I. Opuscula Zoologica Budapest, 35: 53–62.

Kontschán J. 2007. Trachyuropodid mites of the Carpathian Basin (Acari Uropodina: Trachyuropodidae). Opusc. Zool. Budapest, 36: 43–56.

Kontschán J. 2009a. Remarks on the genus Afrotrachytes Kontschán, 2006 (Acari: Uropodina), with description of two new species. Opusc. Zool. Budapest, 40(2): 41–46.

Kontschán J. 2009b. Rotundabaloghia browni spec. nov., a new uropodine mite from Ivory Coast. Spixiana, 32(1): 35–38.

Kontschán J. 2011. Six new species of the family Trachyuropodidae from the Neotropical region (Acari: Mesostigmata: Uropodina). Studies on Neotropical Fauna and Environment, 46(3): 211–223.

Kontschán J. and Starý J. 2013. Three new Trachyuropoda (Acari: Uropodina: Trachyuropodidae) species from the Neotropical region. Turk. J. Zool., 37: 7–14.

Kontschán J., Park S.J., Yoon T.J. and Choi W.Y. 2013. Uropodina mites from the Korean Peninsula (Acari: Mesostigmata). Zoological Collectings by the Hungarian Natural History Museum in Korea No. 204. Ad Librum Publishers, Budapest.

Kouadio K.K.F. 2006. Analyse du système de biomonitoring du Parc National de Taï. Master Dissertation. École Supérieure d'Agronomie (ESA), Institut National Polytechnique Houphouet Boigny de Yamoussoukro, Côte d’Ivoire.

Le Roux X. 2006. Climate. In: Lamto. Structure, Functioning, and Dynamics of a Savanna Ecosystem. Abbadie L, Gignoux J, Le Roux X, Lepage M. (Eds). Lamto. Structure, Functioning, and Dynamics of a Savanna Ecosystem, pp. 25-44. Springer Verlag, New York, USA.

Madej G., Barczyk G. and Gawenda I. 2011. Importance of Microhabitats for Preservation of Species Diversity, on the Basis of Mesostigmatid Mites (Mesostigmata, Arachnida, Acari). Polish J. of Environ. Stud., 20(4): 961–968.

Marchenko I.I. and Bogomolova I.N. 2015. Spatial–Typologic Organization of Populations of Soil Gamasid Mites (Acari, Mesostigmata) in Northern Altai Mountains. Contemporary Problems of Ecology, 8(2): 202–210.

Menaut J.C. and César J. 1979. Structure and primary productivity of Lamto savannas, Ivory Coast. Ecology, 60(6): 1197–1210.

Monnier Y. 1983. Végétation. In: Vennetier P. (Ed.), Atlas de la Côte d'Ivoire (2nd ed.), p. 17, Jeune Afrique, Paris, France

Moreau R. 1983. Sur l’origine d’éléments d’aspects charbonneux observés dans les sols de la région de Taï. Office de la Recherche Scientifique et Technique d’Outre-Mer, Centre d’Adiopodoumé (Côte d’Ivoire), 6 pp

N’Dri J.K. and Andre H.M. 2011. Soil mite densities from central Ivory Coast. Journal of Animal and Plant Sciences, 10: 1283–1299.

Napiera?a A and B?oszyk J. 2013. Unstable microhabitats (merocenoses) as specific habitats of Uropodina mites (Acari: Mesostigmata). Exp. Appl. Acarol., 60: 163–180.

Nef L. 1960. Comparaison de l’efficacité de différentes variantes de l’appareil de Berlese-Tullgren. Z. angew. Ent., 46: 178–199.

Nef L. 1971. Influence de l’humidité sur le géotactisme des Oribates (Acarina) dans l’extracteur de Berlese-Tullgren. Pedobiologia, 11: 433–445.

Noti M-I., André H.M., Ducarme X. and Lebrun P. 2003. Diversity of soil oribatid mites (Acari: Oribatida) from high Katanga (Democratic Republic of Congo): a multiscale and multifactor approach. Biodiversity and Conservation, 12: 767–785.

Pérez-Velázquez D., Castaño-Meneses G., Callejas-Chavero A. and Palacios-Vargas J.G. 2011. Mesostigmatid mite (Acari: Mesostigmata) diversity and abundance in two sites in Pedregal de San Ángel Ecological Reserve, Distrito Federal, México. Zoosymposia, 6: 255–259.

Salmane I. and Spu??is V. 2015. Factors influencing mesostigmata mites (Acari, parasitiformes) in the alkaline fen habitats. Proceedings of the Latvian academy of sciences, 69: 50–56.

Wissuwa J., Salamon J-A. and Frank T. 2012. Effects of habitat age and plant species on predatory mites (Acari, Mesostigmata) in grassy arable fallows in Eastern Austria. Soil Biology and Biochemistry, 50: 96–107.

Wu P., Liu X., Liu S., Wang J. and Wang Y. 2014. Composition and spatio-temporal variation of soil microarthropods in the biodiversity hotspot of northern Hengduan Mountains, China. Eur. J. Soil Biol., 62: 30–38.

Zach P., Kršiak B., Kulfan J., Parák M. and Kontschán J. 2016. Mites Trichouropoda and Uroobovella spp. (Uropodoidea) phoretic on bark beetles (Scolytinae): a comparison from a declining mountain spruce forest in Central Europe. International Journal of Acarology, doi: 10.1080/01647954.2016.1154107