Application of Pyrazole Derivatives As New Substitutes of Auxin IAA To Regulate Morphometric and Biochemical Parameters of Wheat (Triticum Aestivum L.) Seedlings

  • Victoria Anatolyivna Tsygankova Institute of Bioorganic Chemistry and Petrochemistry of NAS of Ukraine.
  • Andrusevich Ya.V Institute of Bioorganic Chemistry and Petrochemistry of NAS of Ukraine.
  • Shtompel O.I Institute of Bioorganic Chemistry and Petrochemistry of NAS of Ukraine.
  • Kopich V.M Institute of Bioorganic Chemistry and Petrochemistry of NAS of Ukraine.
  • Panchyshyn S.Ya Institute of Bioorganic Chemistry and Petrochemistry of NAS of Ukraine.
  • Vydzhak R.M Institute of Bioorganic Chemistry and Petrochemistry of NAS of Ukraine.
  • Brovarets V.S National Academy of Sciences of Ukraine
Keywords: Triticum Aestivum L, IAA, Pyrazole Derivatives

Abstract

The regulating activity of new synthetic low molecular weight heterocyclic compounds, pyrazole derivatives on morphometric, and biochemical parameters of wheat (Triticum aestivum L.) seedlings was studied. The synthetic compounds used at the concentration 10-8M revealed auxin-like stimulating effect on morphometric parameters of 6th-week-old wheat seedlings, which were increased on average: to 31 - 54 % – for total number of roots, to 39 – 104 % – for full length of sources, to 53 - 66 % – for length of the longest root as compared with similar parameters of the wheat seedlings grown in the distilled water (control) or water solution of auxin IAA (1H-Indol-3-ylacetic acid). The synthetic compounds used at the concentration 10-8M revealed cytokinin-like stimulating effect on biochemical parameters of 6th-week-old wheat seedlings. The content of photosynthetic pigments in the leaves of the wheat seedlings grown in the water solution of the pyrazole derivatives used at the concentration 10-8M increased on average: to 15-34 % – for content of chlorophyll a, to 10-61 % – for content of chlorophyll b, to 16–34 % – for content of chlorophylls a+b, to 14–28 % – for content of carotenoids, as compared with similar indices of the wheat seedlings grown in the distilled water (control) or water solution of auxin IAA. The practical application of pyrazole derivatives to regulate morphometric and biochemical parameters of wheat seedlings was proposed.

Downloads

Download data is not yet available.

Author Biographies

Victoria Anatolyivna Tsygankova, Institute of Bioorganic Chemistry and Petrochemistry of NAS of Ukraine.

Principal researcher, Head of group of screening of synthetic compounds of Department for Chemistry of Bioactive Nitrogen-Containing Heterocyclic Compounds, Institute of Bioorganic Chemistry and Petrochemistry of NAS of Ukraine.kraine

Andrusevich Ya.V, Institute of Bioorganic Chemistry and Petrochemistry of NAS of Ukraine.

Department for Chemistry of Bioactive Nitrogen-Containing Heterocyclic Compounds, V.P. Kukhar Institute of Bioorganic Chemistry and Petrochemistry, National Academy of Sciences of Ukraine, 1, Murmanskaya str., 02660, Kyiv, Ukraine

Shtompel O.I, Institute of Bioorganic Chemistry and Petrochemistry of NAS of Ukraine.

Department for Chemistry of Bioactive Nitrogen-Containing Heterocyclic Compounds, V.P. Kukhar Institute of Bioorganic Chemistry and Petrochemistry, National Academy of Sciences of Ukraine, 1, Murmanskaya str., 02660, Kyiv, Ukraine

Kopich V.M, Institute of Bioorganic Chemistry and Petrochemistry of NAS of Ukraine.

Department for Chemistry of Bioactive Nitrogen-Containing Heterocyclic Compounds, V.P. Kukhar Institute of Bioorganic Chemistry and Petrochemistry, National Academy of Sciences of Ukraine, 1, Murmanskaya str., 02660, Kyiv, Ukraine

Panchyshyn S.Ya, Institute of Bioorganic Chemistry and Petrochemistry of NAS of Ukraine.

Department for Chemistry of Bioactive Nitrogen-Containing Heterocyclic Compounds, V.P. Kukhar Institute of Bioorganic Chemistry and Petrochemistry, National Academy of Sciences of Ukraine, 1, Murmanskaya str., 02660, Kyiv, Ukraine

Vydzhak R.M, Institute of Bioorganic Chemistry and Petrochemistry of NAS of Ukraine.

Department for Chemistry of Bioactive Nitrogen-Containing Heterocyclic Compounds, V.P. Kukhar Institute of Bioorganic Chemistry and Petrochemistry, National Academy of Sciences of Ukraine, 1, Murmanskaya str., 02660, Kyiv, Ukraine

Brovarets V.S, National Academy of Sciences of Ukraine

Department for Chemistry of Bioactive Nitrogen-Containing Heterocyclic Compounds, V.P. Kukhar Institute of Bioorganic Chemistry and Petrochemistry, National Academy of Sciences of Ukraine, 1, Murmanskaya str., 02660, Kyiv, Ukraine

References

Lam-Son T., Sikander P. (Eds.).(2014): Phytohormones: A Window to Metabolism, Signaling and Biotechnological Applications, Springer-Verlag, New York, 361 p.

Wania S.H., Kumarb V., Shriramc V., Sah S.K. (2016): Phytohormones and their metabolic engineering for abiotic stress tolerance in crop plants. The crop journal, 4: 162-176.

Erb M., Glauser G. (2010): Family business: multiple members of major phytohormone classes orchestrate plant stress responses. Chem. A Eur. J., 16(34): 10280-10289.

Javid M.G., Sorooshzadeh A., Moradi F., Sanavy S.A.M.M., Allahdadi I. (2011): The role of phytohormones in alleviating salt stress in a crop plant. Australian Journal of Crop Science (AJCS), 5(6): 726-734.

Pieterse C.M.J., Van der Does D., Zamioudis C., Leon-Reyes A., and VanWees S.C.M. (2012): Hormonal Modulation of Plant Immunity. Annual Review of Cell and Developmental Biology, 28: 489-521.

Denancé N., Sánchez-Vallet A., Goffner D. and Molina A. (2013): Disease resistance or growth: the role of plant hormones in balancing immune responses and fitness costs. Frontiers in Plant Science, Plant Cell Biology, 4 (Article155): 1–12.

Rahman A. (2013): Auxin: a regulator of the cold stress response. Physiologia Plantarum, 147: 28–35.

Tuteja N. (2007): Abscisic Acid and Abiotic Stress Signaling. Plant Signal Behav, 2(3): 135–138.

Ahmad P., Rasool S., Gul A., Sheikh S.A., Akram N.A., Ashraf M. (2016): Jasmonates: Multifunctional Roles in Stress Tolerance. Front Plant Sci, 7: 813.

Yusuf M., Khan T.A., Fariduddin Q. (2017): Brassinosteroids: Physiological Roles and its Signalling in Plants. In: Stress Signaling in Plants: Genomics and Proteomics Perspective, Sarwat M., AhmadA., Abdin M.Z., Ibrahim, M.M. (Eds.), Springer International Publishing, 2: pp. 241-260.

Hayat S. and Ahmad A. (Eds.). (2003): Brassinosteroids: Bioactivity and Crop Productivity, Springer Netherlands, XIII: 246 p.

Vlot A.C., Dempsey D.A., and Klessig D.F. (2009): Salicylic Acid, a Multifaceted Hormone to Combat Disease. Annu. Rev. Phytopathol, 47: 177–206.

Vicente M.R.S. and Plasencia J. (2011): Salicylic acid beyond defence: its role in plant growth and development, Journal of Experimental Botany, 62(10): 3321–3338.

Basra A.S. (Ed). (2000): Plant Growth Regulators in Agriculture and Horticulture: Their Role and Commercial Uses. Haworth Press, Inc., New York, London, Oxford, 264 p.

Rademacher W. (2015): Plant growth regulators: backgrounds and uses in plant production. J Plant Growth Regul, 34(4): 845-872.

Meena O.P. (2015): A review: role of plant growth regulators in vegetable production. International Journal of Agricultural Science and Research (IJASR), 5(5): 71-84.

Lopez-lauri F. (2016): Plant Growth Regulators. In: Siddiqui M.W., Zavala A., Hwang J.F., Andy C. (Eds.) Postharvest Management Approaches for Maintaining Quality of Fresh Produce, Springer International Publishing, Switzerland, 125-139 p?.

Jardin P. (2015): Plant biostimulants: Definition, concept, main categories, and regulation, Sci. Hortic, 196 (30): 3–14.

Le Mire G., Nguyen M.L., Fassotte B., Jardin P., Verheggen F., Delaplace P., Jijakli M.H. (2016): Implementing plant biostimulants and biocontrol strategies in the agroecological management of cultivated ecosystems. A review. Biotechnol. Agron. Soc. Environ, 20(S1): 299-313.

Calvo P., Nelson L., Kloepper J.W. (2014): Agricultural uses of plant biostimulants. Plant Soil, 383(1): 3–41.

Tsygankova V.A., ??n?m?renko S.P., Hrytsaenko Z.M. (2012): Increase of plant resistance to diseases, pests, and stresses with new biostimulants. Acta Horticulturae: I World Congress on the Use of Biostimulants in Agriculture, Strasburg (France), 1009: 225–233.

Tsygankova V.A., Iutynska G.A., Galkin A.P., Blume Ya.B. (2014): Impact of New Natural Biostimulants on Increasing Synthesis in Plant Cells of Small Regulatory si/miRNA with High Anti-Nematodic Activity. Internat. J. Biol, 6(1): 48–64.

Bhardwaj D., Ansari M.W., Sahoo R.K., and Tuteja N. (2014): Biofertilizers function asa key player in sustainable agriculture by improving soil fertility, plant tolerance, and crop productivity. Microbial Cell Factories, 13: 66: 1-10.

Rejeb I.B., Pastor V. and Mauch-Mani B. (2014): Plant Responses to Simultaneous Biotic and Abiotic Stress: Molecular Mechanisms. Plants, 3: 458-475.

Dresselhaus T., and Hückelhoven R. (2018): Biotic and Abiotic Stress Responses in Crop Plants. Agronomy, 8: 267.

Doughari J.H. (2015): An Overview of Plant Immunity. J Plant Pathol Microbiol, 6 (11): 322.

Gimenez E., Salinas M. and Manzano-Agugliaro F. (2018): Worldwide Research on Plant Defense against Biotic Stresses as Improvement for Sustainable Agriculture. Sustainability, 10: 391.

Cansev A., Gulen H., Zengin M.K., Ergin S., Cansev M., Kumral N.A. (2016): Use of pyrimidines in the stimulation of plant growth and development and enhancement of stress tolerance, Patent 20160000075.

Corsi C., Wendeborn S.V., Bobbio C., Kessabi J., Schneiter P., Grasso V., Haas U.J. (2011): Isothiazole and pyrazole derivatives for use as plant growth regulators, Patent EP 2358699A1.

Newton T., Waldeck I. (2000): Oxazole carboxamide herbicides, Patent US6096688 A.

Nimbalkar S., Hote S.V. (2015): Pyrazole Derivatives and their Synthesis - A review. International Journal on Recent and Innovation Trends in Computing and Communication, 3(2): 61-65.

Whittingham W.G., Winn C.L., Glithro H., Boussemghoune M.A., Aspinall M.B. (2010): Pyrimidine derivatives and their use as herbicides, Patent WO2010092339 A1.

Minn K., Dietrich H., Dittgen J., Feucht D., Häuser-Hahn I., Rosinger C.H. (2008): Pyrimidine derivatives and their use for controlling undesired plant growth, Patent US 8329717 B2.

Kuragano T., Tanaka Y. (2002): Dérivés de la pyrimidine et herbicides les contenant, Patent WO 2002038550 A1.

Takahashi A., Yamada S., Yamada H., Kawana T. (2001): Mitotic disruption by a novel pyrimidine herbicide, NS?245852, in oat (Avena sativa L.) roots. Weed Biology and Management, 1(3): 1.

Stuart A.L., Ayisi N.K., Tourigny G., Gupta V.S. (1985): Antiviral activity, antimetabolic activity, and cytotoxicity of 3?-substituted deoxypyrimidine nucleosides. Journal of Pharmaceutical Sciences, 74(3): 246–249.

Jain K.S., Chitre T.S., Miniyar P.B., Kathiravan M.K., Bendre V.S., Veer V.S., Shahane S.R., Shishoo C.J. (2006): Biological and medicinal significance of pyrimidines. Curr Sci, 90(6): 793-803.

Jain K.S., Arya N., Inamdar N.N., Auti P.B., Unawane S.A., Puranik H.H., Sanap M.S., Inamke A.D., Mahale V.J., Prajapati C.S., Shishoo C.J. (2016): The Chemistry and Bio-Medicinal Significance of Pyrimidines & Amp; Condensed Pyrimidines. Curr Top Med Chem, 16(28): 3133-3174.

Galmarini C.M., Jordheim L., Dumontet C. (2003): Pyrimidine nucleoside analogs in cancer treatment. Expert Rev Anticancer Ther, 3(5): 717-728.

Parker W.B. (2009): Enzymology of purine and pyrimidine antimetabolites used in the treatment of cancer. Chemical reviews, 109(7): 2880.

Kumar R., Arora J., Prasad A.K., Islam N., Verma A.K. (2013): Synthesis and antimicrobial activity of pyrimidine chalcones. MCRE, 22(11): 5624-5631.

Kumar R., Arora J., Ruhil S., Phougat N., Chhillar A.K., Prasad A.K. (2014): Synthesis and Antimicrobial Studies of Pyrimidine Pyrazole Heterocycles. Advances in Chemistry, Article ID 329681, 1-12.

Raghunat, S.A., Manjunatha Y., and Rayappa K. (2012): Synthesis, antimicrobial, and antioxidant activities of some new indole analogues containing pyrimidine and fused pyrimidine systems. Med Chem Res, 21(11): 3809-3817.

Quin L.D., Tyrell J.A. (2010): Fundamentals of heterocyclic chemistry: Importance in Nature and in the Synthesis of Pharmaceuticals, John Wiley & Sons, Inc., Hoboken, New Jersey, 344 p.

Shiferaw B., Smale M., Braun H.J., Duveiller E., Reynolds M., Muricho G. (2013): Crops that feed the world. 10. Past successes and future challenges to the role played by wheat in global food security. Food Sec., 5(3): 291-317.

Reynolds M., Bonnett D., Chapman S., Furbank R., Mane` Ya, Mather D., Parry M. (2011): Raising yield potential of wheat. I. Overview of a consortium approach and breeding strategies. J Exp Bot. 62: 439-452.

Faltermaier A., Waters D., Becker T., Arendt E. and Gastl M. (2014): Common wheat (Triticum aestivum L.) and its use as a brewing cereal – a review. J. Inst. Brew.. 120: 1-15.

Pathak V., Shrivastav S. (2015): Biochemical studies on wheat (Triticum aestivum L.). Journal of Pharmacognosy and Phytochemistry, 4(3): 171-175.

World Population Prospects, the 2015 Revision. United Nations, New York, 2015.

Barányiová I., Klem K. (2016): Effect of application of growth regulators on the physiological and yield parameters of winter wheat under water deficit. Plant Soil Environ, 62(3): 114-120.

Laghari G.M., Oad F.C., Tunio S., Gandahi A.W., Siddiqui M.H., Jagirani A.W. and Oad S.M. (2010): Growth, yield and nutrient uptake of various wheat cultivars under different fertilizer regimes. Sarhad J. Agric., 26(4): 489-497.

Barányiová I., Klem K., Kren J. (2014): Effect of exogenous application of growth regulators on the physiological parameters and the yield of winter wheat under drought stress. Proc. of Int. Ph.D. Students Conf. At: Mendel University in Brno, Faculty of Agronomy, Czech Repoublic, 2014: 442-446.

Shekoofa A., Emam Y. (2008): Effects of Nitrogen Fertilization and Plant Growth Regulators (PGRs) on Yield of Wheat (Triticum aestivum L.) cv. Shiraz. J. Agric. Sci. Technol., 10: 101-108.

Singh A., Brar K.S., Singh S. and Gandhi N. (2019): Effect of different organic, inorganic and bio-fertilizer on the yield and yield components of wheat. Journal of Pharmacognosy and Phytochemistry, 8(4): 4-6.

Bukowska B. (2006): Toxicity of 2,4-Dichlorophenoxyacetic Acid – Molecular Mechanisms. Polish J Environ Stud, 15(3): 365-374.

Celik I., Tuluce Y. (2007): Determination of toxicity of subacute treatment of some plant growth regulators on rats. Environ Toxicol, 22(6): 613–619.

H?c-Wydro K., Flasi?ski M. (2015): The studies on the toxicity mechanism of environmentally hazardous natural (IAA) and synthetic (NAA) auxin- the experiments on model Arabidopsis thaliana and rat liver plasma membranes. Colloids Surf B Biointerfaces, 130: 53-60.

Thomason, I. A. (1987): “Challenges facing nematology: Environmental risks with nematicides and the need for new approaches,” in Vistas on Nematology, J. A. Weech and D. W. Dickson (Eds), Hyattsville, MD: Society of Nematologists, 469–476.

Aktar M.W., Sengupta D. and Chowdhury A. (2009): Impact of pesticides use in agriculture: their benefits and hazards. Interdiscip Toxicol, 2(1): 1–12;

Alewu B. and Nosiri C. (2011): Pesticides and Human Health, Pesticides in the Modern World - Effects of Pesticides Exposure, M. Stoytcheva (Ed.), InTechOpen.

Nicolopoulou-Stamati P., Maipas S., Kotampasi C., Stamatis P., Hens L. (2016): Chemical Pesticides and Human Health: The Urgent Need for a New Concept in Agriculture. Front Public Health, 4: Article 148.

Tsygankova V., Andrusevich Ya., Shtompel O., Romaniuk O., Yaikova M., Hurenko A., Solomyanny R., Abdurakhmanova E., Klyuchko S., Holovchenko O., Bondarenko O., Brovarets V. (2017): Application of Synthetic Low Molecular Weight Heterocyclic Compounds Derivatives of Pyrimidine, Pyrazole and Oxazole in Agricultural Biotechnology as a New Plant Growth Regulating Substances. Int J Med Biotechnol Genetics, S2:002: 10-32.

Tsygankova V.A., Andrusevich Ya.V., Shtompel O.I., Kopich V.M., Pilyo S.G., Prokopenko V.M, Kornienko A.M, Brovarets V.S. (2017): Intensification of Vegetative Growth of Cucumber by Derivatives of [1,3] oxazolo[5,4-d]pyrimidine and N-sulfonyl substituted of 1,3-oxazole. Research Journal of Life Sciences, Bioinformatics, Pharmaceutical, and Chemical Sciences (RJLBPCS), 3(4): 107–122.

Tsygankova V., Andrusevich Ya., Kopich V., Shtompel O., Pilyo S., Kornienko A.M, Brovarets V. (2018): Use of Oxazole and Ox azolopyrimidine to Improve Oilseed Rape Growth. Scholars Bulletin, 4(3): 301–312.

Tsygankova V.A., Andrusevich Ya.V., Shtompel O.I., Pilyo S.G., Kornienko A.M., Brovarets V.S. (2018): Using of [1,3]oxazolo[5,4-d]pyrimidine and N-sulfonyl substituted of 1,3-oxazole to improve the growth of soybean seedlings. Chemistry Research Journal, 3(2): 165-173.

Tsygankova V.A., Andrusevich Ya.V., Shtompel O.I., Pilyo S.G., Kornienko A.M., Brovarets V.S. (2018): Acceleration of vegetative growth of wheat (Triticum aestivum L.) using [1,3] oxazolo[5,4-d] pyrimidine and N-sulfonyl substituted 1,3-oxazole. The Pharmaceutical and Chemical Journal, 5(2): 167-175.

Tsygankova V.A., Andrusevich Ya.V., Shtompel O.I., Shablykin O.V., Hurenko A.O., Solomyanny R.M., Mrug G.P., Frasinyuk M.S., Pilyo S.G., Kornienko A.M., Brovarets V.S. (2018): Auxin-like effect of derivatives of pyrimidine, pyrazole, isoflavones, pyridine, oxazolopyrimidine, and oxazole on acceleration of vegetative growth of flax. International Journal of PharmTech Research, 11(3): 274-286.

Tsygankova V.A., Andrusevich Ya.V., Shtompel O.I., Solomyanny R.M., Hurenko A.O., Frasinyuk M.S., Mrug G.P., Shablykin O.V., Pilyo S.G., Kornienko A.M., Brovarets V.S. Study of auxin-like and cytokinin-like activities of derivatives of pyrimidine, pyrazole, isoflavones, pyridine, oxazolopyrimidine and oxazole on haricot bean and pumpkin plants, International Journal of ChemTech Research, 2018, 11(10): 174-190.

Tsygankova V., Andrusevich Ya., Shtompel O., Kopich V., Solomyanny R., Bondarenko O., Brovarets V. (2018): Phytohormone-like effect of pyrimidine derivatives on the regulation of vegetative growth of tomato. International Journal of Botany Studies, 3(2): 91-102.

Voytsehovska O.V., Kapustyan A.V., Kosik O.I., Musienko M.M., Olkhovich O.P., Panyuta O.O., Parshikova T.V., Glorious P.S. (2010): Plant Physiology: Praktykum, Lutsk: Teren.

Lichtenthaler H. (1987): Chlorophylls and Carotenoids: Pigments of Photosynthetic Biomembranes. Methods Enzymol, 148: 331–382.

Bang H., Zhou X.K, van Epps H.L., Mazumdar M. (2010): Statistical Methods in Molecular Biology, Series: Methods in molecular biology, New York: Humana press.

Lodish H, Berk A, Zipursky SL, Matsudaira P, Baltimore D, Darnell J. (2000): Molecular Cell Biology. Section 16.3, Photosynthetic Stages and Light-Absorbing Pigments, 4th Ed. W.H. Freeman and Company, New York, USA.

Cazzonelli C.I. (2011): Carotenoids in nature: insights from plants and beyond. Functional Plant Biology, 38: 833-847.

Sabo M., Teklic T., Vidovic I. (2002): Photosynthetic productivity of two winter wheat varieties (Triticum aestivum L.). ROSTLINNÁ VÝROBA, 48 (2): 80–86.

Priadkina H.O. (2018): Pigments, the efficiency of photosynthesis, and winter wheat productivity. Plant Varieties Studying and protection, 14(1): 97–108.

Mok D.W.S., Mok M.C. (2001): Cytokinin metabolism and action. Annu. Rev. Plant Physiol. Plant Mol. Biol. 52: 89-118.

Zwack P.J., Rashotte A.M. (2013): Cytokinin inhibition of leaf senescence. Plant Signaling & Behavior. 8(7): e24737.

Hönig M., Plíhalová L., Husicková A., Nisler J. and Doležal K. (2018): Role of Cytokinins in Senescence, Antioxidant Defence, and Photosynthesis. Int. J. Mol. Sci., 19(4045): 1–23.

Woodward A.W., Bartel B. (2005): Auxin: regulation, action, and interaction. Ann Bot, 95(5): 707–735.

Zhao Yu. (2010): Auxin biosynthesis and its role in plant development. Annu Rev Plant Biol, 61: 49-64.

Sauer M., Robert S., Kleine-Vehn J. (2013): Auxin: simply complicated. J Exp Bot, 64(9): 2565-2577.

Enders T.A., Strader L.C. (2015): Auxin activity: Past, present, and future. Am J Bot, 102(2): 180–196.

Woodward A.W., Bartel B. (2005): A receptor for auxin. Plant Cell, 17(9): 2425–2429.

Tsygankova V.A., Galkina L.A., Musatenko L.I., Sytnik K.M. (2005): Genetic and epigenetic control of plant growth and development. Molecular-genetic control of transmission and realization of auxin signals, Biopolym Cell, 21(3): 187-219.

Teale W.D., Paponov I., Palme K. (2006): Auxin in action: Signalling, transpor, and the control of plant growth and development. Nat Rev Mol Cell Biol, 7(11): 847-859.

Effendi Y., Scherer G.F. (2011): Auxin binding-protein1 (ABP1), a receptor to regulate auxin transport and early auxin genes in an interlocking system with PIN proteins and the receptor TIR1. Plant Signal Behav, 6(8): 1101–1103.

Hayashi K. (2012): The Interaction and Integration of Auxin Signaling Components. Plant and Cell Physiol, 53(6): 965–975.

Lavy M., Estelle M. (2016): Mechanisms of auxin signaling. Development, 143(18): 3226–3229.

Leyser O. (2017): Auxin Signaling, Plant Physiol, 176(1): 465–479.

Hagen G. and Guilfoyle T. (2002): Auxin-responsive gene expression: Genes, promoters, and regulatory factors. Plant Molecular Biology, 49(3-4): 373-85.

Chapman E.J. and Estelle M. (2009): Mechanism of Auxin-Regulated Gene Expression in Plants. Annu Rev Genet, 43: 265–285.

Bouzroud S., Gouiaa S., Hu N., Bernadac A., Mila I., Bendaou N., Smouni A., Bouzayen M., Zouine M. (2018): Auxin Response Factors (ARFs) are potential mediators of auxin action in tomato response to biotic and abiotic stress (Solanum lycopersicum). PLoS ONE, 13(2): e0193517.

Tsygankova V.A. (2015): Genetic Control and Phytohormonal Regulation of Plant Embryogenesis. Int J Med Biotechnol Genetics (IJMBG), 3(1): 9-20.

Cherenkov P., Novikova D., Omelyanchuk N., Levitsky V., Grosse I., Weijers D., Mironova V. (2018): Diversity of cis-regulatory elements associated with auxin response in Arabidopsis thaliana. J Exp Bot, 69(2): 329-339.

Majda M., Robert S. (2018): The Role of Auxin in Cell Wall Expansion. Int J Mol Sci, 19(4): 951.

Catalá C., Rose J.K., Bennett A.B. (2000). Auxin-regulated genes encoding cell wall-modifying proteins are expressed during early tomato fruit growth. Plant Physiol, 122(2): 527–534.

Tsygankova V.A., Galkina L.A., Musatenko L.I., Sytnik K.M. Genetic and epigenetic control of plant growth and development. (2005): Genes of auxin biosynthesis and auxin-regulated genes controlling plant cell division and extension. Biopolym Cell, 21(2): 107-133.

Pop T.I., Pamfil D., Bellini C. (2011): Auxin Control in the Formation of Adventitious Roots, Not Bot Hort Agrobot Cluj, 39(1): 307-316.

Takatsuka H. and Umeda M. (2014): Hormonal control of cell division and elongation along differentiation trajectories in roots. Journal of Experimental Botany, 65(10): 2633–2643.

De Smet S., Cuypers A., Vangronsveld J. and Remans T. (2015): Gene Networks Involved in Hormonal Control of Root Development in Arabidopsis thaliana: A Framework for Studying Its Disturbance by Metal Stress. Int. J. Mol. Sci. 16: 19195-19224.

Shaul O., Van Montagu M., and Inze D. (1996): Cell Cycle Control in Arabidopsis. Annals of Botany, 78: 283–288.

Komaki S. and Sugimoto K. (2012): Control of the Plant Cell Cycle by Developmental and Environmental Cues. Plant Cell Physiol, 53(6): 953–964.

Robert C. Hare. (1964): Indoleacetic Acid Oxidase. Botanical Review, 30(1): 129-165.

Avalbaev A.M., Somov K.A., Yuldashev R.A., Shakirova F.M. (2012): Cytokinin oxidase is a key enzyme of cytokinin degradation. Biochemistry (Mosc). 77(12): 1354-1361.

Kieber J. J., Schaller G.E. (2018): Cytokinin signaling in plant development. Development. 145 (dev149344): 1 – 7.

Kieber, J. J., & Schaller, G. E. (2014): Cytokinins. The Arabidopsis Book, 12, e0168.

Tandon P., Arya H.C. (1982): Association of Auxin Protectors, Peroxidase, Indoleacetic Acid Oxidase, and Polyphenol Oxidase in Zizyphus Gall and Normal Stem Tissues Grown in Culture. Biochemie und Physiologie der Pflanzen, 177(2): 114-124.

Liu Z.H., Hsiao I.C., and Pan Ya.W. (1996): Effect of naphthaleneacetic acid on endogenous indole-3-acetic acid, peroxidase and auxin oxidase in hypocotyl cuttings of soybean during root formation, Bot Bull Acad Sin, 37(4): 247-253.

Gaspar T., Kevers C., Penel C., Greppin H., Reid D.M., Thorpe T.A. (1996): Plant hormones and plant growth regulators in plant tissue culture. In Vitro Cell Dev Biol Plant, 32(4): 272-289.

Šimonová E., Henselová M., Zahradník P. (2005): Benzothiazole derivatives substituted in position two as biologically active substances with plant growth regulation activity. Plant Soil Environ, 51: 496-505.

Tsygankova V.A., Zayets V.N., Galkina L.A., Blume Ya.B. (1999): The phytohormone-mediated action of the synthetic regulators on cell extension growth in higher plants. Biopolym Cell, 15(5): 432–441.

Yip W.K., Yang S.F. (1986): Effect of thidiazuron, a cytokinin–active urea derivative, in cytokinin-dependent ethylene production system. Plant Physiol, 80: 515-519.

Murthy B.N.S., Murch S.J., Saxena P.K. (1995): Thidiazuron-induced somatic embryogenesis in intact seedlings of peanut (Arachis hypogea): Endogenous growth regulator levels and significance of cotyledons. Physiol Plantarum, 94: 268-276.

Hutchinson M.J., Saxena P.K. (1996): Role of purine metabolism in thidiazuron-induced somatic embryogenesis of geranium (Pelargonium hortorum Bailey) hypocotyl cultures. Physiol Plantarum, 98: 517–522.

Murthy B.N.S., Murch S.J., Saxena P.K. (1998): Thidiazuron: A potent regulator of in vitro plant morphogenesis. In Vitro Cell Dev Biol Plant, 34: 267-275.

Guo B., Abbasi B.H., Zeb A., Xu L.L., and Wei Y.H. (2011): Thidiazuron: A multi-dimensional plant growth regulator. AFR J BIOTECHNOL, 10(45): 8984-9000.

Naseem A., Mohammad F. (Eds.) (2018): Thidiazuron: From Urea Derivative to Plant Growth Regulator, Springer Singapore, 491 p.

Published
2019-07-03
How to Cite
Tsygankova, V., Ya.V, A., O.I, S., V.M, K., S.Ya, P., R.M, V., & V.S, B. (2019). Application of Pyrazole Derivatives As New Substitutes of Auxin IAA To Regulate Morphometric and Biochemical Parameters of Wheat (Triticum Aestivum L.) Seedlings. JOURNAL OF ADVANCES IN AGRICULTURE, 10, 1772-1786. https://doi.org/10.24297/jaa.v10i0.8341
Section
Articles