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Abstract 

This article describes a theoretical-didactic approach to the counterexample within mathematics and its 

process of teaching-learning, emphasizing the importance of inducing a logical thinking by introducing 

counterexamples as a process of maturation of mathematical thinking. In addition, it is argued that the 

counterexamples are not very used in the teaching of mathematics, unlike the important role they have in the 

professional mathematic activity. 
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1.Introduction 

The papers reported by (Arnal-Bailera&Oller-Marcén, 2012, Lee, 2016, Lozano, 2015, Stylianou, Chae, & 

Blanton 2006) agreed that one of the main problems where students and professors have difficulties for 

demonstration in mathematics, are the difficulties about argumentation and proof, and this influences in the 

comprehension of concepts and their definitions, properties and logical relations between parts that structure 

the axiomatic-math.  

In particular, the relative researches to the demonstration in the teaching of mathematics reported by (Hersh, 

1993, Antibi, 1998; Mitchel, 1996) argue that while is true that in mathematics the concept of demonstration is 

fundamental, there are a lot of professors who cannot understand why mathematicians give to the 

demonstration a privileged status, others do not identify between empirical arguments and deductive 

arguments; in particular, it has been identified that the professors have difficulties to apply correctly 

definitions, theorems and formulas, professors get confused between sufficient conditions and necessary 

conditions, they use uncertain conclusions that are frequently false. 

In the field of mathematics, by assuming the law of the excluded third, two tools are enabled to prove the 

truth of an affirmation: it is proved and with this it gets established that it is true, or a counterexample is 

exhibited to refute it. However, in the teaching practice, we have identified in both professors and students the 

existence of difficulties in the utility of this law as a resource of demonstration, and it can be seen, the frequent 

non-use of the counterexample as a tool that makes possible the refutation of affirmations. Although the 

systematic use of counterexamples to refute affirmations is not present in the teaching process, the papers 

reported by (Morales, 2008 y Locia, 2000) establish that the good comprehension about validation 
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mechanisms must necessarily go through a careful analysis of the functioning of refutations, in general, and of 

the use of counterexamples, in particular. 

From the purely mathematical point of view, the counterexample has a well-defined status. When this notion 

is approached from the field of logic, a closed logical statement of the type  is proposed. To prove its 

invalidity, it has to be proved by the law of the excluded third that the statement  is true, in other 

words, an  must be produced, such as . Thus, the rule of the counterexample is enunciated in the 

following way: To prove that a statement of universal character is false, it is sufficient to show a 

counterexample (Arsac, 1997). 

With this background, this paper inquired about the didactic conception of the counterexample in a group of 

fifteen professors in middle school, pre-university and university, and in training. In particular, the following 

conceptions were explored: 

1. Professors recognize counterexamples only when they are fully and normally present in the standard 

conditions we have identified: At length: a closed statement of type  is proposed, the students 

must to declare its invalidity , make a  such as  and to indicate that this prove that. 

2. Professors recognize counterexamples in larger, less rigorous and incomplete situations, which will prove a 

different didactic conception of the logical conception. 

 

1. Theoretical-didactic approach to the counterexample. 

2.1 Identification of the counterexample object. 

Considering the definition given by Kleene: 

 “A formula F of the predicate calculus is not exactly valid if F is falsifiable in the following sense: A 

non-empty domain D exists and an assignment in D of the parameters of F that give the value (false). That 

assignment will be called counterfeit for F in D and F will be called falsifiable in this D […] 

The system formed by this D and this assignment may be appointed as constituting a counterexample to F. 

Replacing F for T (true) we obtain the notions of satisfiable of assignment that satisfies. […] and of example” 

(Kleene, 1967, pp 284). 

1. It is immediately observed that the term “counterexample” is not defined as a term of the predicate 

calculus, and not even of the model theory of the predicate calculus. It is a metalinguistic term, 

intermediary between the language of the constructor and the constructed language. It remits to a certain 

organization of a set of formulas of predicate calculus constituted in element of “demonstration”. 

2. In this definition is said that a counterexample is a pair (D, ) formed by a domain D and of an assignment 

 (in other words an n-tuple of values of the parameters of F), but in fact for this pair to be an example or 

a counterexample, it is necessary to remit it to an argument F, as a result (D, , F) form a counterexample 

whether  and whether  takes the value  and an example whether   and whether  takes the 

value . The everyday formulation in mathematics becomes in “  is a counterexample of F in the domain 

D”. In this case, the use emphasizes the assignment , which becomes “the counterexample”, while the 

other two terms are relegated to the second plane as conditions or even they merge in the context. 

3. In logic, the notion of the counterexample only appears in model theory. There the validity of formulas are 

examined by the assignments of their variables to different domains. In the theory of demonstration this 

notion does not appear. What could correspond to it would be the production of two contradictory closed 

statements such as  and , in other words . But X is not “displayed” because 

there is not domain of realization to consider and the vocabulary of the “examples” do not have object. 
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However, in mathematical practice, especially at the elemental level, the languages and the methods of two 

theories are used simultaneously (the concept of valid consequence gets confused with the deduction, for 

example). 

4. In the definition of Kleene, only the formulas F that are not formally closed may be the object of a 

counterexample, inasmuch as they have to possess at least an assignment  in at least a domain D. 

Notwithstanding the counterexample, in fact, is going to use it to refute the validity of closed formulas. In 

other words, whether an any closed formula P is given of predicate calculus and a domain D. This domain 

determines the possible assignments of some parameters of P. We consider the predicate F (we should 

say F(P)) obtained by suppressing in P the quantifiers relating to those parameters. In this F which is 

susceptible of receiving examples and/or counterexamples in D. 

2.2 Counterexamples in the construction of mathematical knowledge  

2.2.1 Heuristics of mathematical discovery. Polya´s work. 

In his studies about heuristics of mathematical discovery, G. Polya works with the topic about strategies to get 

new knowledge (Polya, 1958). He affirms that although is true that finished mathematics, presented in a 

definitive form, they seem purely demonstrative by involving only theorems and demonstrations, the same is 

not true for mathematics in gestation. In the construction of new mathematical knowledge, is necessary 

combine the observations and rely on analogies. It is necessary to try and try to get conjectures and guess 

their demonstrations. Poly analyses, from concrete examples, search strategies based on the processes of 

induction, analogy, generalization and particularization and he says that such processes are particular cases of 

a type of reasoning very used in mathematics: plausible reasoning. The scheme of such reasoning is the 

following: a conjecture A is reached (which is believed to be true) and from A is deduced an affirmation B. If B 

is false, A becomes more plausible. 

Although Polya´s works are not focused on the use of counterexamples in mathematics, what it is important to 

underline is the proposed procedure, based on the interactions between train and error to surmise and proof. 

The detection of an error, a contradiction or an omission is well received as an important step in the 

construction of the proof. 

2.2.2 The logic of the mathematical discovering. Lakatos´ work. 

The book I. Lakatos (Lakatos, 1976) is a significant presentation of the operation of the counterexample in the 

logic of mathematical discovering. The author presents the methodology of mathematical discovering through 

the logic of proofs and refutations, through a fictitious debate between a professor and their students in a 

class where the Euler´s conjecture is discussed. This conjecture aims to establish a relation between the 

number of faces, number of edges and number of vertexes of a polyhedron. It is convenient to mention that 

the stages of this debate are real: They are all those through which mathematicians passed in the search for a 

definitive proof of Euler´s theorem. 

The Euler conjecture and a proposal of a proof. The analysis carried out by Lakatos on the logic of the 

mathematical discovering starts with the search of a relation between the number V of vertexes, the number A 

of edges and the number C of faces of a polyhedron, similar to that between the number V vertexes and the 

number A of sides of a polygon, that is V=A. After several trials and errors, one of the participants in the 

debate presents the Euler conjecture to the group: In every polyhedron V-A+C=2. 

In the absence of a definitive proof, Lakatos shows how he can presents a conjecture what he calls “a mental 

experiment” or “quasi-experiment”, it is characterized mainly for the decomposition of the primitive conjecture 

into sub-conjecture or lemmas that open up new instances of criticism and contrast. Thus, the mental 

experiment to which the Euler conjecture is subjected consists of the following lemmas or sub-conjectures 

(this proof is inspired by that given by Cauchy in 1813): 
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1. A polyhedron is flattened by removing one of their faces. So that establish  for a flat 

graph. 

 

2. The flat graph is triangulated by drawing diagonals on faces that are not triangles. In this operation is 

added one face and one edge are added at each step, therefore  keeps constant. 

 

3. The triangles are eliminated, one by one, with one of the following two operations: Delete one side or 

delete two sides and one vertex. Thus, if  before one of the two operations, then 

 after. At the end of this procedure, there keeps only one triangle for 

which , therefore it can pretend that the conjecture is proven. 

 

Counterexamples and dialectic of proof and refutation. From this proof, Lakatos illustrates the operation of 

mathematics from the formulation of conjectures, to the confirmation or refutation of them. He tells how the 

examples appear that do not fit with the conjecture or with the proof (counterexamples), showing their 

function of falsification or refutation. The criterion of rigor that Lakatos gives is that, if any counterexample 

comes to refute the conjecture or its proof, this (the conjecture) must be accepted as true. He calls global 

counterexample to that counterexample that refutes the conjecture and local counterexample to the one that 

refutes its proof (or one of its lemmas). A local counterexample has the characteristics that make the proof not 

valid for that case, however it verifies the conjectured proposition. These refute one of the lemmas, without 

refute the conjecture; they criticize the proof because in that example, the property was supposed to be valid 

is not fulfilled. What is refuted is an implicit lemma and therefore, the proof. On the other hand, the presence 

of global counterexamples of the theorem produces a conflict between the concept, the conjecture and its 

proof. This conflict involves the conjecture or the proof, and it can be solved in different ways, including 

adjusting the definition of the concept or determining the abandonment of the conjecture. A global 

counterexample can be at the same time local, in other words, to refute a lemma (or sub-conjecture) of the 

proof: it can only refutes the conjecture, in other words, it is global but not local. This case is treated in a 

special way by Lakatos. All this allows to establish different working methods with the objective of the validity. 

According to these methods, the counterexamples can lead respectively to try to revise the conjecture, the 

involved terms or its proof. Method of surrender, of exclusion of monsters, of adjustment of monsters, of 

exclusion of exceptions, and of incorporation of lemmas. Lakatos shows how the debate about incomplete 

demonstrations is one of the preponderant elements of progress in mathematical discovery. Especially when 

the putative demonstrations imply implicit, they resort to evidence (“hidden lemmas”), they use notions that 

are not totally defined, where errors and contradictions can be dissimulated. It is precisely the existence of 

these errors and these contradictions that is productive. The fact of overcoming them becomes a source of 

progress. The presentation of a counterexample to expose a contradiction can lead to questioning about the 

proof looking for the “hidden lemmas” that give rise to the counterexample. Thus, in the interaction of the 

proof and the counterexample, the latter not only serves to expose the error, but it also leads to retake ideas 

of implicitly defined objects (which in view of the necessities of its use we will be obliged to specify little little 

to explain their definitions), and to realize the different meanings of the terms used to express the 

demonstrations. 

2.2.3. The role of counterexamples in the production of mathematical knowledge. 

Lakatos points out that counterexamples have a much more important role in the search for results in 

mathematics than what makes us believe their place in the classical (axiomatic) presentation of these same 

results. It was identified, how, in his project to oppose the characteristics of mathematics made with 

mathematical activity, the counterexample has the role of a revealing. It allow him to show that dialectic of 

research is not well represented by the order and by means of classical exposition and demonstration. 

More precisely, Lakatos shows the driving role of the attempts at proof and refutations in the elaboration of a 

mathematical theory and the role of counterexamples in this dialectic. His modelling of the debate of Euler 
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conjecture allows to understand well the different uses of the counterexample as a means of control of the 

validity of conjectures, demonstrations, conditions of validity, as a means of choosing definitions and so on, 

and this modelling also shows how, progressively, the process of mathematization hides and eliminates these 

counterexamples by: relegation of exceptions, incorporation of lemmas and so on. 

Once the construction work is finished, the scaffolding of counterexamples disappears from the text; this can 

only be restored-at least in part- by the reader, as an activity of interrogation and comprehension of the text. 

This restoration is obviously very partial. 

2.2.4 Use of the counterexample in the study of content and extension of the concepts. 

A concept is a generalized mental model of two classes, a class of certain features (attributes, properties) or 

relations between grouped objects and the other class constituted by objects with that characteristics . They 

are called essential properties of a concept to characteristics of objects modeled in it, each of which is 

necessary to distinguish the objects that correspond to the concept of others and all in sufficient sets for this 

purpose. The concept of object is taken as primary; namely, without definition. 

Every concept always has two logical characteristics: content and extension. A set of essential properties of 

modeled objects in the concept, which is sufficient to distinguish the new objects of the concept, constitutes 

its content. Content is an indispensable factor of any concept, so it cannot exist a concept lacking content, in 

which consequently no property is conceived. The extension of a concept is the kind (set) of models of objects 

that this concept covers. Extension is a logical characteristic of the concept as indispensable as its content. The 

model of the object is understood as the collection of its registers of representations (graphic, analytical and 

so on). 

 

Image 1: The five possible relations between extensions  and , two concepts. 
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In this work a concept is indicated by the pair (�,) or simply by � when there are not doubts; where � 

denotes to the extension of concept and for � to its content. Different collections  of properties that only 

the elements of �  can be found. It is usual to indicate the content by the collection of properties { }  � 

that has been chosen, where � is a set of indexes. That indicates the objects that belong to the extension of 

the concept simultaneously fulfill all those properties, or what is the same, fulfill the unique property . 

Extensions �  and �  of two concepts (� , 1) and ( ,2) fulfill only one of the five relations that are 

shown in the image 1. 

To determine the conjunctist relation that the extensions �  and �E2 have, it is necessary demonstrate, or 

refute, one or several universal P propositions of the form “All element of the class �  ( respectively) 

belongs to the class �  (E1  respectively)” and existential of the type “There is an element of the class �  

(�  respectively) that belongs to the class �  (�  respectively)”, image 2. 

To refute a proposition of this kind it is sufficient to find, or construct, a counterexample. To refute the 

proposition “All continuous function of real variable is differentiable in all its domain �”, it is 

sufficient to construct an element of extension C ( ) of concept of continuous function on  that does not 

belong to the extension D( ) of concept of differentiable function on . This proposition is equivalent to the 

preposition “There is a continuous function that is not differentiable at a point of its domain”. 

2.2.5 The role of counterexamples in didactic of mathematics 

In the development of mathematics propositions that correspond to implications are used. Examples and 

counterexamples are very useful tools to show, respectively, the existence of objects that fulfil all the 

hypotheses and that none of these can be eliminated. In this direction we agree with Tsamir, Tirosh and 

Levenson (2008), when in the scope of general principles of the formation of concepts, the particular cases of 

a concept can be called examples. 

In the statement of the Mean Value Theorem are imposed on a real function with domain [a,b], , the 

two following conditions,  is continuous on [a,b] and  is derivable on (a,b). 

Before studying the Rolle and Mean Value Theorems, many students have not worked with elements of 

collection C [ ] ⋂ D ( ) for which there are not derivables of the function in �  and . 

The function  defined by (x) =  belongs to the class C[−1,1]⋂D(−1,1) and there are not derivables 

𝑓'(−1) and 𝑓'(1). The real function 𝑓 with domain [−1,1] defined by 𝑓(𝗑)= (1/6)  if 𝗑< 0 y 𝑓( )=    if , is 

continuous on [−1,1], but does not comply with the property of derivability over the entire interval, since it is 

only derivable over  (−1,1)\{0}, 𝑓'( )=(1\3) 𝗑  if , 𝑓'(0) does not exist and 𝑓'(𝗑)=1 if . This function 𝑓 

does not meet the equality 𝑓'(𝑐)=[𝑓(1) − 𝑓(−1)]/2 for any 𝑐 de (−1,1)\{0}; since the equality is only met for 𝑐 = 

15/12, and in this case 𝑐 does not belong to (−1, 1). 

Results and Discussion 

Approach to the didactic use of the counterexample. In the field of mathematics teaching-learning, works 

have been developed concerning the formulation of conjectures and the use of counterexample for the 

treatment of concepts, properties and mathematical relations. In particular, in the investigations reported by 

Weber (2009), Komatsu (2010), Ko and Knuth (2013), Giannakoulias, Mastorides, Potari and Zachariades (2010), 

Komatsu, Jones, Ikeda and Narazaki (2017), Garcia & Morales (2013), Klymchuk (2010), Zazkis & Chernoff 

(2008), Huang (2014) have identified that they are aimed at students, professor in service and in training, and 

towards postgraduate students, in each of them it becomes clear that the counterexample is a didactic tool 

that  favors the processes of validation and comprehension of mathematical knowledge. 

From the analysis of the studies reported in aforementioned works, regarding the use of counterexample; we 

identify the following methodological implications:  
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1. It allows to stimulate the students´ reasoning of the how and why of the processes followed to reach 

conclusions, and to diminish the memory and algorithmic learning procedures: this implication was 

identified in reach works directed towards the student in the school levels (elementary school, middle 

school, high school, undergraduate and postgraduate) to deal with specific content of mathematics such 

as: arithmetic, algebra, geometry, calculus and analysis, number theory and so on. 

 

2. It allows the functional structuring of the logical-mathematical reasoning: this implication was identified in 

the proposals related to the study of the proof and the production of the counterexample for the 

validation of results. 

 

3. Encourages students to reflect on essential aspects of mathematics by highlighting the importance of the 

rules, principles, theorems and properties associated with mathematical objects: this implication was 

identified in the student's activity, the professor´s and the professor in training. 

 

4. It allows to identify through the constructive process of knowledge the basic and invariant characteristics 

and properties of mathematical objects: this implication was identified from counterexamples proposals 

that favored the refutation of conjectures about the definition of concepts of mathematical objects in 

concrete subjects of arithmetic, geometry, algebra, calculus, number theory, and so on. 

 

5. Reveals misconceptions, and requires attention to each detail of the process by improving the 

understanding of mathematical concepts and properties: this implication was identified when conceiving 

the counterexample in its semantic connotation and its use as a didactic tool to favor validation processes; 

and in this process, the refutation through the counter-example proposal was fundamental. 

 

In previous sections we have seen that, in mathematics, the word counterexample has a well-defined meaning 

and status and that its role in the construction of mathematical knowledge through the dialectic of proof and 

refutation is of great importance despite that, once the mathematical theories have been completed and 

presented in an axiomatic manner, the counterexamples disappear completely from the mathematical texts. 

Conclusions 

- In the professional mathematical activity the counterexamples have a very important role. However, this role 

is not present in the axiomatic presentation of knowledge. 

- The bias thus introduced in the didactic transposition of mathematics, has consequences in teaching where 

counterexamples have a modest role, little representative that they have in professional mathematical activity. 

Thus counterexamples are methods of reasoning rather than objects of teaching. 

-The theoretical-didactic elements of approach to the counterexample provide the theoretical foundation of 

attention to the mathematical content and give the methodological basis for the elaboration of proposals that 

contribute in the teaching-learning processes of mathematics, in a specific way: the treatment of concepts and 

their definitions, theorems and their demonstrations. 
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