Gradient observability and sensors for hyperbolic systems

A. Boutoulout, H. Bourray and A. Khazari
TSI Team Moulay Ismail University, Faculty of Sciences Meknes Morocco
boutouloutali@yahoo.fr
TSI Team Moulay Ismail University, Faculty of Sciences Meknes Morocco
hbourrayh@yahoo.fr
TSI Team Moulay Ismail University, Faculty of Sciences Meknes Morocco
adil0974@gmail.com

ABSTRACT
The aim of this paper is to develop useful rigorous results related to the gradient observability and sensors. The concept of gradient strategic sensors is characterized and applied to the wave equation. This emphasizes the spatial structure and location of the sensors in order that regional gradient observability can be achieved. The developed results are illustrated by many examples. Finally, the reconstruct method leads to a numerical algorithm illustrated by simulations.

Indexing terms/Keywords
Distributed systems, hyperbolic systems, regional gradient observability, sensor strategic.

Academic Discipline And Sub-Disciplines
E.g., System theory; Control optimal.

SUBJECT CLASSIFICATION
E.g., Mathematics Subject Classification; 93B07, 93C20.

TYPE (METHOD/APPROACH)
E.g., Approach HUM (Hilbert Uniqueness Method); Approach variational; Numerical approach.

1. INTRODUCTION

Various real problems can be formulated within certain concepts of distributed systems analysis. The concepts consist of a set of notions as observability and controllability, which enables a better knowledge and understanding of the evolution of the system. The observability concept has been studied at different degrees (exact observability, weakly observability). Systems analysis can be done from a purely theoretical viewpoint (see [1] and [5]). But the study may also become concrete in some sense, by using the structure of sensors. Recently, the regional observability concept has been defined in Zerrik and El Jai (see [2]). It consists in observation of the initial state defined only in a subregion \(\omega \subset \Omega \) and then it was extended in Zerrik (see [7] and [10]) to the case where \(\omega \) is a part of boundary \(\partial \Omega \) of \(\Omega \). This concept was extended in Bourray (see [6]) to the regional gradient observability that is interested in observation the system gradient given on a part \(\omega \) of \(\Omega \). Characterization results of the notion of weak and exact controllability and observability as well as strategic actuators and sensors, are established (El Jai (see [2] and [4]), Zerrik and al. (see [6] and [9]), Boutoulout (see [8]) and Badraoui (see [11]).

The purpose of this paper is to give characterization of the gradient observability for hyperbolic system in connection with sensors structures. More precisely we show that there exists a sensor locations which enable a system regional gradient observable.

The work is organized as follows, in section 2, we introduce the notion of regional weak and exact observability of hyperbolic systems. Then in section 3, we introduce the notion of sensors strategic. Specific properties of this notion are presented and various situations are also examined. In section 4, we give applications to the wave equation with illustrative examples in one and two dimension.

2. REGIONAL GRADIENT OBSERVABILITY

2.1. Problem statement

We start by presenting the notations and some preliminary material. Let \(\Omega \) be an open bounded subset of \(IR^n \) with regular boundary \(\partial \Omega \) and \(\omega \) a subregion of \(\Omega \). For \(T > 0 \), we note \(Q = \Omega \times [0,T] \), \(\Sigma = \partial \Omega \times]0,T[\) and we consider the following hyperbolic system defined by

\[
\begin{cases}
\frac{\partial^2 y}{\partial t^2}(x,t) = Ay(x,t) & \text{in } Q \\
y(x,0) = y^0(x), \frac{\partial y}{\partial t}(x,0) = y^1(x) & \text{in } \Omega \\
y(\xi,t) = 0 & \text{on } \Sigma
\end{cases}
\]

where \(A \) is an elliptic and second order operator. The system (1) is observed by measures given by the output function

\[
z(t) = Cy(t)
\]

with \(C : H^1_0(\Omega) \rightarrow IR^d \) operator linear and depends on the considered sensor structure. Consider the observation space \(O = L^2(0,T,IR^d) \) and assume that \((y^0, y^1) \in X = H^1_0(\Omega) \times H^1_0(\Omega) \).

\[
\bar{y}(t) = \begin{bmatrix} y(t) \\ \frac{\partial y}{\partial t}(t) \end{bmatrix}, \quad \bar{y} = \begin{bmatrix} y \\ y \end{bmatrix} \quad \text{and} \quad \bar{A} = \begin{bmatrix} 0 & I \\ A & 0 \end{bmatrix}
\]

For \((y_1, y_2) \in F = L^2(\Omega) \times L^2(\Omega) \) the system (1) is equivalent to

\[
\begin{cases}
\frac{\partial y}{\partial t}(t) = \bar{A} \bar{y}(t) & 0 < t < T \\
y(0) = \bar{y}
\end{cases}
\]

augmented with the output function

\[
\bar{y}(t) = \begin{bmatrix} y(t) \\ \frac{\partial y}{\partial t}(t) \end{bmatrix}, \quad \bar{y} = \begin{bmatrix} y \\ y \end{bmatrix} \quad \text{and} \quad \bar{A} = \begin{bmatrix} 0 & I \\ A & 0 \end{bmatrix}
\]

For \((y_1, y_2) \in F = L^2(\Omega) \times L^2(\Omega) \) the system (1) is equivalent to

\[
\begin{cases}
\frac{\partial y}{\partial t}(t) = \bar{A} \bar{y}(t) & 0 < t < T \\
y(0) = \bar{y}
\end{cases}
\]
\[z(t) = C\bar{y}(t) \]

(4)

with \(C = (C,0) \) defined by \(C(y^0, y^1)^T = (C y^0, 0)^T \), the system (3) has a unique solution which can be expressed as \(\bar{y}(t) = \tilde{S}(t)y^0 \) where \((\tilde{S}(t))_{t \geq 0} \) is the semigroup generated by the operator \(\tilde{A} \).

Let’s consider a basis of eigenfunctions of the operator \(A \), denoted \(\Phi_{m,j} \), with associated eigenvalues \(\lambda_m \) with multiplicity \(r_m \), we can write for \((y_1, y_2) \in \mathbb{F} \)

\[
\tilde{S}(t) \left(\begin{array}{c} y_1 \\ y_2 \end{array} \right) = \left(\sum_{m = 1}^{\infty} \sum_{j = 1}^{r_m} \begin{bmatrix} \langle y_1, \Phi_{m,j} \rangle \cos(-\lambda_m)^{\frac{1}{2}} t + \langle y_2, \Phi_{m,j} \rangle \sin(-\lambda_m)^{\frac{1}{2}} t \\ -\lambda_m^2 \langle y_1, \Phi_{m,j} \rangle \sin(-\lambda_m)^{\frac{3}{2}} t + \langle y_2, \Phi_{m,j} \rangle \cos(-\lambda_m)^{\frac{3}{2}} t \end{bmatrix} \Phi_{m,j} \right) \]

then the output equation can be expressed by

\[\tilde{z}(t) = CS(t)\bar{y} = \tilde{K}(t)\bar{y}, \quad t \in [0, T] \]

where \(\tilde{K} \) be the observation operator defined by

\[
\tilde{K} : \mathbb{X} \rightarrow \mathbb{O} \\
\tilde{z} \mapsto C\bar{S}()\tilde{z}
\]

which is linear and bounded with the adjoint \(\tilde{K}^* \) given by

\[
\tilde{K}^* : \mathbb{O} \rightarrow \mathbb{X} \\
\tilde{z}^* \mapsto \frac{T}{0} \tilde{S}^*(t)C^*\tilde{z}^*(t)dt
\]

Consider the operator \(\nabla \), given by the formula

\[
\nabla : \mathcal{H}^1_0(\Omega) \times \mathcal{H}^1_0(\Omega) \rightarrow (L^2(\Omega))^n \times (L^2(\Omega))^n \\
(y_1, y_2) \mapsto \nabla(y_1, y_2) = (\nabla y_1, \nabla y_2)
\]

where

\[
\nabla : \mathcal{H}^1_0(\Omega) \rightarrow (L^2(\Omega))^n \\
y \mapsto \nabla y = (\frac{\partial y}{\partial x_1}, \ldots, \frac{\partial y}{\partial x_n})
\]

Its adjoint \(\nabla^* \) is given by

\[
\nabla^* : (L^2(\Omega))^n \times (L^2(\Omega))^n \rightarrow \mathcal{H}^1_0(\Omega) \times \mathcal{H}^1_0(\Omega) \\
(y_1, y_2) \mapsto \nabla^*(y_1, y_2) = (\nabla^* y_1 = v_1, \nabla^* y_2 = v_2)
\]

where \(v_i (i = 1, 2) \) are the solutions of the following Dirichlet problem

\[
\begin{cases}
\Delta v_i = -\text{div}(y_i) & \text{in } \Omega \\
v_i = 0 & \text{on } \partial \Omega
\end{cases}
\]
The initial state \mathbf{y}_0 and its gradient $\nabla \mathbf{y}_0$ are assumed to be unknown.

For a nonempty subset ω of Ω with positive Lebesgue measure, let π_{ω} be the restriction operator defined by

$$\pi_{\omega} : (L^2(\Omega))^n \to (L^2(\omega))^n$$

$$(y_1, y_2) \mapsto \pi_{\omega}(y_1, y_2) = (\chi_{\omega} y_1, \chi_{\omega} y_2)$$

where

$$\chi_{\omega} : (L^2(\Omega))^n \to (L^2(\omega))^n$$

$$\xi \mapsto \chi_{\omega} \xi = \xi |_{\omega}$$

and

$$\pi_{\omega}^* : (L^2(\omega))^n \to (L^2(\omega))^n$$

$$(y_1, y_2) \mapsto \pi_{\omega}^*(y_1, y_2) = \begin{cases} (y_1, y_2) & \text{in } \omega \\ (0, 0) & \text{in } (\Omega \setminus \omega) \end{cases}$$

and π_{ω}^* denotes its adjoint operator, defined as follows

$$(y_1, y_2) \mapsto \pi_{\omega}^*(y_1, y_2) = \begin{cases} (y_1, y_2) & \text{in } \omega \\ (0, 0) & \text{in } (\Omega \setminus \omega) \end{cases}$$

Let us recall that sensors form an important link between a system and its environment. Sensors have an active role and are used to receive the information of the system. This means that the sensors will appear as a right-hand side member of a model, their structure will depend on the shape of the support, the location of the support and the spatial distribution of the measure. A sensor is mathematically defined by a pair (D, f), where

1. $D \subset \Omega$ is the support of the sensor.
2. f is the spatial distribution of the measure on the support D. In the case of a pointwise sensor (internal or boundary), D is reduced to the location $\{b\}$ of the sensor and $f = \delta(., b)$ where δ_b is the Dirac mass concentrated in b.

Problem statement

The system (1) together with the output (2), the problem of gradient observability of the reconstruction gradient of the initial condition in the subregion $\omega \subset \Omega$. This is a natural extension of the observability concept.

Then we introduce the operator $\tilde{H} = \pi_{\omega} \nabla \pi_{\omega}^*$ from O into $(L^2(\omega))^n \times (L^2(\omega))^n$.

Let us recall some definitions about the regional observability of the gradient.

Definition 1

1. The system (1) together with the output (2) is said to be exactly gradient observable in ω or exactly G-observable in ω if $\text{Im} \tilde{H} = (L^2(\omega))^n \times (L^2(\omega))^n$.
2. The system (1) together with the output (2) is said to be weakly gradient observable in ω or weakly G-observable in ω if $\text{Im} \tilde{H} = (L^2(\omega))^n \times (L^2(\omega))^n$.

Definition 2

1. A sensor (D, f) is said to be gradient strategic in ω if the observed system is weakly G-observable in ω.
2. A sequence of sensors $(D_i, f_i)_{1 \leq i \leq q}$, is said to be gradient strategic or G-strategic if there is one sensor (D_b, f_b) which is gradient strategic.
3. SENSORS GRADIENT STRATEGIC

Consider the system (1) and assume that the measurements are given by way of sensors \((D_i, f_i)\), \(1 \leq i \leq q\).

The output equation is then given by:

\[
z(t) = C y(t) = (z_1(t), \ldots, z_q(t))^T
\]

with \(D_i = \{h_i\}\) and \(f = \delta(-h_i)\) in the pointwise sensor.

and \(D_i \subset \Omega\) with \(f \in L^2(D_i)\) for the zonal sensor.

We assume that \((\Phi_{m_i})_{i \leq j \leq r} m \in \mathbb{N}\) form a complete system in \(H^1_0(\Omega)\), orthonormale in \(L^2(\Omega)\).

More we assume that \(r = \sup r_m < \infty\), so we have the following

Proposition 3

The sequence of sensors \((D_i, f_i)\), \(1 \leq i \leq q\), is \(G\) -strategic in \(\omega\) if and only if

- \(q \geq r\)
- \(\text{rang}(G_m \gamma^m_{\omega}) = r_m, \ \forall m \geq 1\)

where \((G_m)_j = \begin{cases} \sum_{k=1}^{n} \frac{\partial \Phi_{m_i}}{\partial x_k} f_i \|L^2(D_i)\) \quad \text{in the zone case} \\ \sum_{k=1}^{n} \frac{\partial \Phi_{m_i}}{\partial x_k} (h_i) \quad \text{in the pointwise case} \end{cases}\)

with \(1 \leq i \leq q\) and \(1 \leq j \leq r_m\).

and \(\gamma^m_{\omega} = \begin{pmatrix} \gamma^m_{\omega,1} \\ \vdots \\ \gamma^m_{\omega,r_m} \end{pmatrix}
\sim \gamma^m_{\omega,j} = \langle \Phi_{m_i} \Phi_{j_i} \rangle \quad k = 1, \ldots, r_j \quad \text{and} \quad j \geq 1\)

Proof

We show that if \(\text{rang}(G_m \gamma^m_{\omega}) = r_m, \ \forall m \geq 1\), then the system (1) together with the output (2) is weakly \(G\) -observable in \(\omega\).

We suppose that \(\text{Ker} \mathcal{K}^*_\omega \mathcal{V}^*_\omega \neq \{0\}\), then there exists \(z^* = (z^*_{1}, z^*_{2}) \in (L^2(\omega))^n \times (L^2(\omega))^n\) with \((z^*_{1}, z^*_{2}) \neq 0\) and \(\mathcal{K}^*_\omega \mathcal{V}^*_\omega z^* = 0\).

with

\[
\mathcal{V}^*_\omega z^* = \langle \chi_{\omega} z^*_{1}, \chi_{\omega} z^*_{2} \rangle
\]

\[
= (\mathcal{V}^*_\omega z^*_{1}, \ldots, \mathcal{V}^*_\omega z^*_{1}, \mathcal{V}^*_\omega z^*_{2}, \ldots, \mathcal{V}^*_\omega z^*_{2})
\]

And then
\[\mathbf{K} \nabla \mathbf{a} \cdot \mathbf{\Phi} (z^a, z^b) = \mathbf{K} \nabla \mathbf{a} \cdot \mathbf{\Phi}_m (z^a, z^b) \]
\[= \sum_{m=1}^{\infty} \sum_{j=1}^{m} \sum_{l=1}^{n} \left(\mathbf{\Phi}_m \cos(-\lambda_m) \right)^{1/2} \]
\[+ (-\lambda_m)^{1/2} \mathbf{\Phi}_m \sin(-\lambda_m)^{1/2} \frac{\partial \mathbf{\Phi}_m}{\partial z_k} \]
\[= 0 \quad \forall i = 1 \ldots q \]

with \(\mathbf{\Phi}_m \)

For \(T \) large enough the functions \(\sin(-\lambda_n) z^a, \cos(-\lambda_n) z^a \) constitute a complete orthonormale set of \(L^2(0,T) \), then

\[\sum_{m=1}^{n} \sum_{j=1}^{m} \sum_{l=1}^{n} \left(\mathbf{\Phi}_m \cos(-\lambda_m) \right)^{1/2} \]
\[+ (-\lambda_m)^{1/2} \mathbf{\Phi}_m \sin(-\lambda_m)^{1/2} \frac{\partial \mathbf{\Phi}_m}{\partial z_k} \]
\[= 0 \quad \forall i = 1 \ldots q \]

or \(z_k^a = \sum_{m=1}^{n} \sum_{j=1}^{m} \sum_{l=1}^{n} \left(\mathbf{\Phi}_m \cos(-\lambda_m) \right)^{1/2} \mathbf{\Phi}_m \)
\[\forall k = 1 \ldots n \]

if \(z_k^a \neq 0 \) then \(\exists k_0 \), \(1 \leq k_0 \leq n, l_1 \geq 1 \) and \(1 \leq s \leq n \) with \(\mathbf{\Phi}_m \mathbf{\Phi}_m \neq 0 \)

Let's consider :

\[z_k^a = \begin{bmatrix} (z^a_1, \Phi_m)^{L(0)}_{m=1} & \ldots & (z^a_n, \Phi_m)^{L(0)}_{m=1} \\ \vdots & \ddots & \vdots \\ (z^a_1, \Phi_m)^{L(0)}_{m=n} & \ldots & (z^a_n, \Phi_m)^{L(0)}_{m=n} \end{bmatrix} \]

then we obtain \(G_{\mathbf{\Phi}_m} \mathbf{\Phi}_m^j \neq 0 \) or \(z_k^a \neq 0 \), then \(\text{rangi} \) this is contradiction with \(\text{rang} \neq m \), \(\forall m \geq 1 \), and the same for \(z^a \in (L^2(0,T))^n \) and \(z^a \neq 0 \).

Finally \(\text{Ker} \mathbf{K} \nabla \mathbf{a} (z^a, z^b) = \{0\} \), then the system (1) together with the output (2) is weakly \(G \)-observable in \(\Phi \).

Conversely, we assume that there exist \(l' \geq 1 \) such that \(\text{rangi} \neq l' \), then, there exist
Let's consider $z^k \in (L^2(\omega))^n$ satisfying

$$\begin{align*}
\langle z^k, \Phi_{l,s} \rangle_{L^2(\omega)} &= z^k_s, & \forall s = 1, \ldots, n, \forall k = 1, \ldots, n \\
\langle z^k, \Phi_{l,s} \rangle_{L^2(\omega)} &= 0, & \forall l \neq l', \forall s = 1, \ldots, n, \forall k = 1, \ldots, n
\end{align*}$$

Let's consider $z^s \in (L^2(\omega))^n$ satisfying

$$\begin{align*}
\langle z^s, \Phi_{l,s} \rangle_{L^2(\omega)} &= z^s_l, & \forall l = 1, \ldots, n, \forall k = 1, \ldots, n \\
\langle z^s, \Phi_{l,s} \rangle_{L^2(\omega)} &= 0, & \forall l \neq l', \forall s = 1, \ldots, n, \forall k = 1, \ldots, n
\end{align*}$$

As $G_{l,s}^\omega z_l^i = 0$, then we have $z^k = (z^k, z^s) \neq 0$ and $z^s \in Ker \mathcal{K} \mathcal{E}^\omega \mathcal{K}_\omega$ (io) the system (1) together with the output (2) is not weakly G-observable in ω.

Finally, the system (1) together with the output (2) is weakly G-observable in ω then $\text{range} G_{l,s}^\omega = r_m, \forall m \geq 1$.

Remark 4

1. Proposition (3) implies that the required number of sensors is greater than or equal to the largest multiplicity of the eigenvalues.
2. By infinitesimally deforming the domain, the multiplicity of the eigenvalues can be reduced to one (see [3]). Consequently, the regional G-observability in ω can be guaranteed using only one sensor.
3. The above result can easily be extended to the case of pointwise sensors (internal or boundary).

4. APPLICATIONS

Let us apply the previous results to the case of diffusion systems (1) in one or two dimensions with the output may be pointwise or zone. The system domain will be $\Omega_i = [0, a_i]$ in one-dimensional space and $\Omega_i = [0, d_i] \times [0, d_i]$ in two-dimensional space. The time interval is $[0, T]$ with $T > 0$.

Let $Q_i = \Omega_i \times [0, T]$ and the boundaries $\Sigma_i = \partial \Omega_i \times [0, T]$.

4.1. Pointwise sensor

Let us consider the system with the output may be pointwise sensor (b, δ_b)

$$\begin{align*}
\frac{\partial^2 y}{\partial t^2}(x, t) &= \Delta y(x, t) & \text{in } Q_i, & i = 1, 2 \\
y(x, 0) &= y^0(x), & \frac{\partial y}{\partial t}(x, 0) &= y^1(x) & \text{in } \Omega_i, & i = 1, 2 \\
y(x, t)|_{\Sigma_i} &= 0 & \text{on } \Sigma_i, & i = 1, 2
\end{align*}$$

(6)

4.1.1. One-dimensional case

Choose a region $\omega = [\alpha, \beta[\subset [0, a]$. In this case the eigenvalues and eigenfunctions of the system (6) are given by
the eigenvalues are of multiplicity one. we have

Corollary 5

The sensor \((b, \delta_b)\) is \(G\)-strategic in \(\omega\) if and only if \(\frac{b - \alpha}{\beta - \alpha} \notin S_g = \bigcup_{m=1}^{\infty} \left\{ \frac{2k+1}{2m} : 0 \leq k \leq m - \frac{1}{2} \right\} \).

Remark 6

- The system (6) is not weakly observable in \([0, a]\) if and only if \(\frac{b}{a} \in S = \bigcup_{m=1}^{\infty} \left\{ \frac{k}{m} : 1 \leq k < m \right\} \).

- The system (6) is not weakly \(G\)-observable in \([0, a]\) if and only if \(\frac{b}{a} \in S_g = \bigcup_{m=1}^{\infty} \left\{ \frac{2k+1}{2m} : 0 \leq k \leq m - \frac{1}{2} \right\} \).

We have \(S_g \subset S\), which shows that there exist sensors which are \(G\)-strategic without being strategic. +

4.1.2. Two-dimensional case

The output function is given by \(z(t) = y(b, t)\), with \(b = (\alpha, \beta) \in \Omega\). Then we have the following result.

Corollary 7
The sensor \((b, \delta_b)\) is not \(G\)-strategic if there exist \(m_b, n_b \in \mathbb{N}^+\) such that

\[
\left(\frac{m_b}{d_1} + \frac{n_b}{d_2} \right) \sin \left(\frac{m_b \alpha}{d_1} + \frac{n_b \beta}{d_2} \right) \pi = \left(\frac{m_b}{d_1} - \frac{n_b}{d_2} \right) \sin \left(\frac{m_b \alpha}{d_1} - \frac{n_b \beta}{d_2} \right) \pi
\]

The proof derive immediately from proposition (3).

4.2. Zone sensor

In this case we consider the system (6) augmented with the output \(z(t) = \int_D y(x, t) f(x) dx\) which corresponds to sensor located in the domain \(D\).

In the one or two-dimensional cases, the eigenvalues and the eigenfunctions are given by (7) or (8).

4.2.1. One-dimensional case

Assume that \(D = [x_1 - \ell, x_1 + \ell] \subset \Omega\) and \(f \in L^2(D)\), we have the following result.

Corollary 8

If \(f\) is symmetrical with respect to the line \(x = x_1\), then the zone sensor \((D, f)\) is not \(G\)-strategic if one of these conditions is verified

i. \(\frac{x_1}{a} \in \mathbb{N}^+\).

ii. There exist \(m \in \mathbb{N}^+\) such that \(\frac{mx_1}{a} - \frac{1}{2} \in \mathbb{N}^+\).

4.2.2. Two-dimensional case

Fig 4: Location of zone sensor.
We assume that $\frac{d_1^2}{d_2^2} \notin \mathbb{D}$ and $r_m = 1$, then one sensor may be sufficient to ensure the gradient observability. In this case we shall consider the following two situations.

4.2.2.1. A rectangular support

![Fig 5: Location of zone sensor with a rectangular support.](image)

Here the sensor support is taken to be $D = [a_1 - \ell_1, a_1 + \ell_1] \times [a_2 - \ell_2, a_2 + \ell_2] \subset \Omega_2$, we have

Corollary 9

If f symmetrical with respect to the line $x = a_1$ and $y = a_2$, then the sensor (D, f) is not G-strategic if one of these conditions is verified

i. $\frac{a_1}{d_1} \in \mathbb{D}, \frac{a_2}{d_2} \in \mathbb{D}$.

ii. There exist $m_n, n_0 \in \mathbb{D}^*$ such that $\left(\frac{m_n a_1}{d_1} - \frac{1}{2} \right) \in \mathbb{D}$ and $\left(\frac{n_0 a_2}{d_2} - \frac{1}{2} \right) \in \mathbb{D}$.

4.2.2.2. A circular support

![Fig 6: Location of zone sensor with a circular support.](image)
Let \(c = (c_1, c_2) \) be the center of the disk \(D = D(c, r) \) of radius \(r \), then we have

Corollary 10

If \(f \) is symmetrical with respect to the line \(x = c_1 \) and \(y = c_2 \), then the sensor \((D, f)\) is not \(G \)-strategic if one of these conditions is verified

\[
i. \quad \frac{c_1}{d_1} \in \square, \quad \frac{c_2}{d_2} \in \square
\]

\[
ii. \quad \text{There exist } m_0, n_0 \in \mathbb{N}^* \text{ such that } \left(\frac{m_0c_1}{d_1} - \frac{1}{2}\right) \in \square \text{ and } \left(\frac{n_0c_2}{d_2} - \frac{1}{2}\right) \in \square.
\]

The proof of corollary (8); (8) and (10) derive immediately from proposition (3). This shows that regional gradient observability is linked to location of a disk center and the distribution of measures.

Remark 11

1. A sensor which is strategic is also \(G \)-strategic.
2. We note that the sensor support given above corresponds to real geometry of a sensor in diffusion system. The hypothesis of symmetry distribution is physically realistic. For example this would be the case if the sensor was equally distributed over its support \((f = \delta\chi_D)\), where \(\chi_D\) is the characteristic function and \(D \subset \Omega\) is the zone in which the measurements are carried out.
3. From a practical point of view, the distributed system is most often approximated by a finite-dimensional system. Then the conditions of the weakly \(G \)-observability can be also verified for the finite-dimensional system. For instance, in the pointwise sensor case, if the system is approximated by a three-dimensional system, then the condition of the non \(G \)-observability is \(\frac{\alpha}{d_1} \in I_3\) where \(I_3 = \{1/2, 1/3, 2/3\}\) with \(\beta = 0\).

5. HILBERT UNIQUENESS METHOD

In this section, we present an approach which allows the reconstruction of the initial state gradient of (1) in \(\rho\). This approach is an extension of the Hilbert Uniqueness Method (H.U.M.) developed by Lions and does not take into account what must be the residual initial gradient in the subregion \(\Omega, \rho\).

Let’s consider the set

\[
\mathcal{G} = \{(h^1, h^2) \in (L^2(\Omega))^2 \times (L^2(\Omega))^2 \mid h^1 = h^2 = 0 \text{ sur } \Omega, \rho\} \cap (\nabla(f^1, f^2) \mid (f^1, f^2) \in H^1_0(\Omega) \times H^1_0(\Omega))
\]

For \((\varphi^0, \varphi^1) \in H^1_0(\Omega) \times H^1_0(\Omega)\), we consider the following system

\[
\begin{align*}
\frac{\partial^2 \varphi}{\partial t^2}(x, t) &= \Delta \varphi(x, t) & \text{in } Q \\
\varphi(x, 0) &= \varphi^0(x), \quad \frac{\partial \varphi}{\partial t}(x, 0) = \varphi^1(x) & \text{in } \Omega \\
\varphi(\xi, t) &= 0 & \text{on } \Sigma
\end{align*}
\]

which admits a unique solution \(\varphi \in C(0, T; H^1_0(\Omega)) \cap C^1(0, T; L^2(\Omega))\). (see [5])

We develop our reconstruction approach in the case where the system (1) is observed by pointwise sensors.

Let us define the semi-norm on \(\mathcal{G}\) by
\[
(\bar{\varphi}^0, \bar{\varphi}^1) \mapsto \| (\bar{\varphi}^0, \bar{\varphi}^1) \|_G = \left[\int_0^T \left(\sum_{k=1}^n \frac{\partial \varphi}{\partial x_k}(b, t) \right)^2 dt \right]^{\frac{1}{2}},
\] (10)

We introduce the auxiliary system
\[
\begin{cases}
\frac{\partial^2 \varphi}{\partial t^2}(x, t) = \Delta \varphi(x, t) + \sum_{k=1}^n \frac{\partial \varphi}{\partial x_k}(b, t) \delta(x - b) & \text{in } Q \\
\varphi(x, T) = 0, \frac{\partial \varphi}{\partial t}(x, T) = 0 & \text{in } \Omega \\
\frac{\partial \varphi}{\partial v}(\xi, t) = 0 & \text{on } \Sigma
\end{cases}
\] (11)

The solution \(\varphi \) of (11) is in \(C(0, T; H^1_0(\Omega)) \cap C^1(0, T; L^2(\Omega)) \). (See [8]).

The resolution of the system (11) provides \(\varphi(x, 0) = \varphi^0(x) \) and \(\frac{\partial \varphi}{\partial t}(x, 0) = \varphi^1(x) \).

When the semi norm (10) is a norm, we also denote by \(G \) the completion of \(G \) and we consider the operator
\[
\Lambda : G \rightarrow G^*,
(\bar{\varphi}^0, \bar{\varphi}^1) \mapsto P(\tilde{\varphi}^1, \tilde{\varphi}^0)
\]
where \(P = \overline{\chi \times \chi} \) and \(\begin{cases} \tilde{\varphi}^1 = (\varphi^1, \ldots, \varphi^1) \\ \tilde{\varphi}^0 = (\varphi^0, \ldots, \varphi^0) \end{cases} \)

With \(\tilde{\varphi}(x, 0) = \tilde{\varphi}^0(x) \) and \(\frac{\partial \tilde{\varphi}}{\partial t}(x, 0) = \tilde{\varphi}^1(x) \)

We introduce the system
\[
\begin{cases}
\frac{\partial^2 \varphi}{\partial t^2}(x, t) = \Delta \varphi(x, t) + \sum_{k=1}^n \frac{\partial \varphi}{\partial x_k}(b, t) \delta(x - b) & \text{in } Q \\
\varphi(x, T) = 0, \frac{\partial \varphi}{\partial t}(x, T) = 0 & \text{in } \Omega \\
\frac{\partial \varphi}{\partial v}(\xi, t) = 0 & \text{on } \Sigma
\end{cases}
\] (12)

If \((\bar{\varphi}^0, \bar{\varphi}^1) \) is chosen such that \(\bar{\varphi}^1 = \bar{\varphi}^1 \) and \(\bar{\varphi}^0 = \bar{\varphi}^0 \) in \(\omega \), then the system (12) looks like the adjoint of the system (1), and the regional gradient observability amounts to the conditions for solving the equation
\[
\Lambda(\bar{\varphi}^0, \bar{\varphi}^1) = P(\bar{\varphi}^1, \bar{\varphi}^0)
\] (13)

where \(\begin{cases} \Phi^1 = (\frac{\partial \varphi}{\partial t}, \ldots, \frac{\partial \varphi}{\partial t}) \text{ with } \bar{\varphi} \text{ being the solution of (12)} \\ \Phi^0 = (\varphi^0, \ldots, \varphi^0) \end{cases} \)

Remark 12
Among choice of \(\bar{\varphi}^0 \) and \(\bar{\varphi}^1 \) who realizes \(\bar{\varphi}^0 = \bar{\varphi}^0 \) and \(\bar{\varphi}^1 = \bar{\varphi}^1 \) in \(\omega \).

For \(\bar{\varphi}^0 = \gamma^0_1 \) and \(\bar{\varphi}^1 = \gamma^1_1 \), this choice is not unique but if we show that the operator \(\Lambda \) is an isomorphism then (13) admit a unique solution \((\bar{\varphi}^0, \bar{\varphi}^1) \) which will coincide with \((\gamma^0_1, \gamma^1_1) \) in \(\omega \).
We consider the decomposition of the initial state as
\[y^0 = \begin{cases} y_1^0 & \text{in } \omega \\ y_2^0 & \text{in } \Omega \setminus \omega \end{cases} \quad \text{and} \quad y^1 = \begin{cases} y_1^1 & \text{in } \omega \\ y_2^1 & \text{in } \Omega \setminus \omega \end{cases} \] (14)
and the decomposition of the gradient of the initial state as follows
\[\nabla y^0 = \begin{cases} y_1^0 & \text{in } \omega \\ y_2^0 & \text{in } \Omega \setminus \omega \end{cases} \quad \text{and} \quad \nabla y^1 = \begin{cases} y_1^1 & \text{in } \omega \\ y_2^1 & \text{in } \Omega \setminus \omega \end{cases} \] (15)

Proposition 13

If the sensor \((b, \delta_b)\) is \(G\)-strategic in \(\omega\), then the semi norm (10) becomes a norm and the equation (13) has a unique solution \((\phi^0, \phi^1)\) which corresponds to \((y^0, y^1)\) the gradient of the initial state to be observed in the subregion \(\omega\).

Proof

If the system (1) together with the output (2) is weakly \(G\)-observable in \(\omega\), then (10) defines a norm in \(G\).

Let’s consider \((\Phi_m)\) the eigenfunctions of the operator \(\Delta\), without loss of generality, we assume that the eigenvalues \(\lambda_m\) are simple (see[3]).

Let’s \((\phi^0, \phi^1) \in G\) such as \(\langle \phi^0, \phi^1 \rangle_G = 0 \), we show that \(\langle \phi^0, \phi^1 \rangle = (0,0) \) and \(\langle \phi^0, \phi^1 \rangle_G = 0 \) gives
\[\sum_{k=1}^{n} \sum_{i=1}^{\infty} \langle \phi^0, \Phi_i \rangle_{L^2(\Omega)} \cos(-\lambda_i)^{\frac{1}{2}} t + (-\lambda_i)^{\frac{1}{2}} \langle \phi^1, \Phi_i \rangle_{L^2(\Omega)} \sin(-\lambda_i)^{\frac{1}{2}} t \int \nabla \Phi_i \cdot (b) = 0 \]
for \(T\) large enough the functions \(\{ (\sin(-\lambda_i)^{\frac{1}{2}} t)_{n=1}, (\cos(-\lambda_i)^{\frac{1}{2}} t)_{n=1} \} \) form a complete orthonormal set in \(L^2(0,T) \), we obtain
\[\langle \phi^0, \Phi_i \rangle_{L^2(\Omega)} \sum_{k=1}^{n} \nabla \Phi_i \cdot (b) = 0 \quad \text{and} \quad \langle \phi^1, \Phi_i \rangle_{L^2(\Omega)} \sum_{k=1}^{n} \nabla \Phi_i \cdot (b) = 0 \quad \forall i \geq 1 \]
or the sensor \((b, \delta_b)\) is \(G\)-strategic, then \(\sum_{k=1}^{n} \nabla \Phi_i \cdot (b) = 0 \quad \forall i \geq 1 \) then \(\langle \phi^0, \Phi_i \rangle = \langle \phi^1, \Phi_i \rangle = 0 \quad \forall i \geq 1 \) which implies \((\phi^0, \phi^1) = (0,0)\) then \((\phi^0, \phi^1) = (0,0)\)

We show that \(\Delta\) is an isomorphism

Multiplying (11) by \(\nabla \phi \) and integrating over \(Q\), we obtain
\[\int_0^T \left(\frac{\partial \phi}{\partial x_k} (x,t), \frac{\partial^2 \psi}{\partial t^2} (x,t) \right)_{L^2(\Omega)} dt = \int_0^T \left(\frac{\partial \phi}{\partial x_k} (x,t), \Delta \psi(x,t) \right)_{L^2(\Omega)} dt \]
\[+ \int_0^T \left(\frac{\partial \phi}{\partial x_k} (x,t), \sum_{l=1}^{n} \frac{\partial \phi}{\partial x_l} (b,t) \delta(x-b) \right)_{L^2(\Omega)} dt \]
which gives
\[
\left[\frac{\partial \varphi}{\partial x_k}, \frac{\partial \psi}{\partial t}(x,t) \right]_{L^2(\Omega)}^T - \left[\frac{\partial \varphi}{\partial x_k}(x,t), \psi(x,t) \right]_{L^2(\Omega)}^T \right]
\]
\[
+ \int_0^T \left(\frac{\partial^2 \varphi}{\partial x_k \partial t^2} (x,t), \psi(x,t) \right)_{L^2(\Omega)} dt
\]
\[
= \int_0^T \left(\frac{\partial \varphi}{\partial x_k} (x,t), \Delta \psi(x,t) \right)_{L^2(\Omega)} dt
\]
\[
+ \int_0^T \frac{\partial \varphi}{\partial x_k} (b,t) \sum_{l=1}^n \frac{\partial \varphi}{\partial x_l} (b,t) dt
\]

with the final condition, we obtain
\[
\left\langle \left(- \frac{\partial \psi}{\partial x_k}(x,0), \frac{\partial \psi}{\partial t}(x,0) \right)_{L^2(\Omega)} \right\rangle + \left\langle \frac{\partial \varphi}{\partial x_k}(x,0), \psi(x,0) \right\rangle_{L^2(\Omega)}
\]
\[
+ \left\langle \Delta \frac{\partial \varphi}{\partial x_k} (x,t), \psi(x,t) \right\rangle_{L^2(\Omega)}
\]
\[
= \left\langle \frac{\partial \varphi}{\partial x_k} (x,t), \Delta \psi(x,t) \right\rangle_{L^2(\Omega)}
\]
\[
+ \int_0^T \frac{\partial \varphi}{\partial x_k} (b,t) \sum_{l=1}^n \frac{\partial \varphi}{\partial x_l} (b,t) dt
\]

Using the Green formula, we obtain
\[
\left\langle \left(- \frac{\partial \psi}{\partial x_k}(x,0), \frac{\partial \psi}{\partial t}(x,0) \right)_{L^2(\Omega)} \right\rangle + \left\langle \frac{\partial \varphi}{\partial x_k}(x,0), \psi(x,0) \right\rangle_{L^2(\Omega)}
\]
\[
+ \left\langle \Delta \frac{\partial \varphi}{\partial x_k} (x,t), \psi(x,t) \right\rangle_{L^2(\Omega)}
\]
\[
= \int_0^T \frac{\partial \varphi}{\partial x_k} (b,t) \sum_{l=1}^n \frac{\partial \varphi}{\partial x_l} (b,t) dt
\]

and then
\[
\left\langle \left(- \frac{\partial \psi}{\partial x_k}(x,0), \psi(x,0) \right), \frac{\partial \varphi}{\partial x_k}(x,0), \frac{\partial \varphi}{\partial t}(x,0) \right\rangle_{L^2(\Omega)}
\]
\[
= \int_0^T \frac{\partial \varphi}{\partial x_k} (b,t) \sum_{l=1}^n \frac{\partial \varphi}{\partial x_l} (b,t) dt
\]

Thus
\[
\sum_{k=1}^n \left\langle \left(- \frac{\partial \psi}{\partial x_k}(x,0), \psi(x,0) \right), \frac{\partial \varphi}{\partial x_k}(x,0), \frac{\partial \varphi}{\partial t}(x,0) \right\rangle_{L^2(\Omega)}
\]
\[
= \sum_{k=1}^n \int_0^T \frac{\partial \varphi}{\partial x_k} (b,t) \sum_{l=1}^n \frac{\partial \varphi}{\partial x_l} (b,t) dt
\]

Finally
\[
\left\langle \Lambda(\bar{\varphi}^0, \bar{\varphi}^1), (\bar{\varphi}^0, \bar{\varphi}^1) \right\rangle = \int_0^T \left(\sum_{l=1}^n \frac{\partial \varphi}{\partial x_l} (b,t) \right)^2 dt
\]
\[
\Rightarrow (\bar{\varphi}^0, \bar{\varphi}^1) \in G,
\]

which proves that \(\Lambda \) is an isomorphism and (13) has a unique solution which corresponds to the gradient of the initial condition to be estimated in the subregion \(\omega \).

6. ESTIMATION OF THE INITIAL CONDITIONS
In this section we show how one can solve the equation (13) and we give explicit expressions for \(\chi^0 \) and \(\chi^1 \) in \(\omega \), which can be used for numerical simulations as shown in the next section. Using standard optimization techniques, it is well known that solving (13) is equivalent to the minimization problem

\[
\mathcal{R}(\varphi^0, \varphi^1) = \frac{1}{2} \langle \Lambda(\varphi^0, \varphi^1), (\varphi^0, \varphi^1) \rangle - \langle P(-\overline{\Psi}(0), \overline{\Psi}(0), (\varphi^0, \varphi^1) \rangle
\]

with \(P(\overline{\Psi}(0), \overline{\Psi}(0)) = \langle \overline{\Psi}, \overline{\Psi}^0 \rangle \)

From \(\varphi(b, t) = \sum_{m=1}^{\infty} \langle \varphi^0, \Phi_m \rangle \cos \sqrt{-\lambda_m} t + \langle \varphi^1, \Phi_m \rangle \sin \sqrt{-\lambda_m} t \rangle \Phi_m(b) \)

We have \(\sum_{l=1}^{m} \partial^{2\varphi}(b, t) = \sum_{l=1}^{m} \left[\langle \varphi^0, \Phi_m \rangle \cos \sqrt{-\lambda_m} t + \langle \varphi^1, \Phi_m \rangle \sin \sqrt{-\lambda_m} t \right] \frac{\partial \Phi_m(b)}{\partial t} \)

Then

\[
\int_0^T \left[\sum_{l=1}^{m} \partial^{2\varphi}(b, t) \right]^2 dt = \int_0^T \left[\sum_{l=1}^{m} \left(\langle \varphi^0, \Phi_m \rangle \cos \sqrt{-\lambda_m} t + \langle \varphi^1, \Phi_m \rangle \sin \sqrt{-\lambda_m} t \right) \frac{\partial \Phi_m(b)}{\partial t} \right]^2 dt
\]

we obtain

\[
\lim_{T \to +\infty} \frac{1}{2T} \int_0^T \left[\sum_{l=1}^{m} \partial^{2\varphi}(b, t) \right]^2 dt = \frac{1}{4} \sum_{m=1}^{\infty} \left(\langle \varphi^0, \Phi_m \rangle \right)^2 \left(\langle \varphi^1, \Phi_m \rangle \right)^2 \left(\frac{\partial \Phi_m(b)}{\partial t} \right)^2
\]

For \(T \) large enough we have

\[
\frac{1}{2} \int_0^T \left[\sum_{l=1}^{m} \partial^{2\varphi}(b, t) \right]^2 dt \leq \frac{1}{4} \sum_{m=1}^{\infty} \left(\langle \varphi^0, \Phi_m \rangle \right)^2 \left(\langle \varphi^1, \Phi_m \rangle \right)^2 \left(\frac{\partial \Phi_m(b)}{\partial t} \right)^2
\]

But

\[
\varphi^0(x) = \sum_{m=1}^{\infty} \langle \varphi^0, \Phi_m \rangle \Phi_m(x) \quad \text{and} \quad \varphi^1(x) = \sum_{m=1}^{\infty} \langle \varphi^1, \Phi_m \rangle \Phi_m(x)
\]

Then

\[
\varphi^0(x) = \sum_{m=1}^{\infty} \langle \varphi^0, \Phi_m \rangle \nabla \Phi_m(x) \quad \text{and} \quad \varphi^1(x) = \sum_{m=1}^{\infty} \langle \varphi^1, \Phi_m \rangle \nabla \Phi_m(x)
\]

Finally

\[
\begin{align*}
\langle \overline{\Psi}^1, \varphi^0 \rangle &= \sum_{l=1}^{\infty} \sum_{m=1}^{\infty} \langle \varphi^0, \Phi_m \rangle \langle \overline{\Psi}^1, \partial \Phi_m \rangle \\
\langle \overline{\Psi}^0, \varphi^1 \rangle &= \sum_{l=1}^{\infty} \sum_{m=1}^{\infty} \langle \varphi^1, \Phi_m \rangle \langle \overline{\Psi}^0, \partial \Phi_m \rangle
\end{align*}
\]

the minimization of (16) is equivalent to find

\[
\inf_{(\varphi^0, \varphi^1)} \frac{1}{4} \sum_{m=1}^{\infty} \left(\langle \varphi^0, \Phi_m \rangle \right)^2 \left(\langle \varphi^1, \Phi_m \rangle \right)^2 \left(\frac{\partial \Phi_m(b)}{\partial t} \right)^2 + \sum_{m=1}^{\infty} \left(\langle \varphi^0, \Phi_m \rangle \sum_{l=1}^{\infty} \langle \overline{\Psi}^1, \partial \Phi_m \rangle - \langle \varphi^1, \Phi_m \rangle \sum_{l=1}^{\infty} \langle \overline{\Psi}^0, \partial \Phi_m \rangle \right)
\]

with separation of the variables we obtain
\[
\inf_{\varphi^0 \in M} \sum_{m=1}^{\infty} \left[\frac{T}{4} \langle \varphi^0, \Phi_m \rangle^2 + \frac{1}{2} \sum_{l=1}^{n} \frac{\partial \Phi_m}{\partial x_l} (b) \right]^2 \quad \frac{1}{2} \sum_{l=1}^{n} \frac{\partial \Phi_m}{\partial x_l} (b) \right] \\
\inf_{\varphi^0 \in M} \sum_{m=1}^{\infty} \left[-\frac{T}{4} \lambda_m \langle \varphi^0, \Phi_m \rangle^2 \right. \\
\left. + \frac{1}{2} \sum_{l=1}^{n} \frac{\partial \Phi_m}{\partial x_l} (b) \right) \left(-\langle \varphi^0, \Phi_m \rangle \right)^2 \sum_{l=1}^{n} \frac{\partial \Phi_m}{\partial x_l} (b) \right] = 0 \quad \forall m \geq 1
\]

we have
\[
\frac{\partial}{\partial \varphi^0} \left[\frac{T}{4} \langle \varphi^0, \Phi_m \rangle^2 + \frac{1}{2} \sum_{l=1}^{n} \frac{\partial \Phi_m}{\partial x_l} (b) \right] = 0 \quad \forall m \geq 1
\]

which is equivalent to
\[
\langle \varphi^0, \Phi_m \rangle = -2 \frac{T}{\frac{1}{2}} \frac{\langle \Phi^1, \varphi^m \rangle}{\langle \Phi^1, \varphi^m \rangle} \quad \forall m \geq 1
\]

Idem for
\[
\langle \varphi^1, \Phi_m \rangle = -2 \frac{T}{\frac{1}{2}} \frac{\langle \Phi^0, \varphi^m \rangle}{\langle \Phi^0, \varphi^m \rangle} \quad \forall m \geq 1
\]

and it is known that
\[
\vartheta(x, t) = \sum_{k=1}^{\infty} \vartheta_k (t) \Phi_k (x)
\]

with
\[
\vartheta_k (t) = \frac{\Phi_k (b)}{\sqrt{\lambda_k}} \int_0^t \sum_{i=1}^{n} \frac{\partial y_i (b, s)}{\partial x_i} \sin \sqrt{\lambda_k} (s-t) ds
\]

but
\[
\vartheta (x, 0) = \vartheta^0 (x) = \sum_{k=1}^{\infty} \langle \vartheta^0, \Phi_k \rangle \Phi_k (x)
\]

and
\[
\frac{\partial \vartheta}{\partial t} (x, 0) = \vartheta^1 (x) = \sum_{k=1}^{\infty} \langle \vartheta^1, \Phi_k \rangle \Phi_k (x)
\]

then
\[
\vartheta^0 = \sum_{k=1}^{\infty} \frac{\Phi_k (b)}{\sqrt{\lambda_k}} \int_0^T \sum_{i=1}^{n} \frac{\partial y_i (b, s)}{\partial x_i} \sin \sqrt{\lambda_k} sds \Phi_k (x)
\]

and
\[
\vartheta^1 = \sum_{k=1}^{\infty} \left(-\Phi_k (b) \right) \int_0^T \sum_{i=1}^{n} \frac{\partial y_i (b, s)}{\partial x_i} \cos \sqrt{\lambda_k} sds \Phi_k (x)
\]

finally
\[
\langle \Phi^0, \vartheta \rangle = \sum_{l=1}^{n} \sum_{k=1}^{\infty} \Phi_k (b) \int_0^T \sum_{i=1}^{n} \frac{\partial y_i (b, s)}{\partial x_i} \sin \sqrt{\lambda_k} sds \langle \Phi_k, \vartheta \rangle_{L^2 (\omega)}
\]

and
\[
\langle \Phi^1, \vartheta \rangle = \sum_{l=1}^{n} \sum_{k=1}^{\infty} \left(-\Phi_k (b) \right) \int_0^T \sum_{i=1}^{n} \frac{\partial y_i (b, s)}{\partial x_i} \cos \sqrt{\lambda_k} sds \langle \Phi_k, \vartheta \rangle_{L^2 (\omega)}
\]

Finally we obtain the explicit formulae for the initial gradient \(\gamma^0 \) and \(\gamma^1 \):
\[
\gamma^0 (x) = \begin{cases}
\frac{2}{T} \sum_{m=1}^{\infty} \left[\sum_{l=1}^{n} \sum_{k=1}^{\infty} \frac{\partial \Phi_k (b)}{\partial x_l} \int_0^T \sum_{i=1}^{n} \frac{\partial y_i (b, s)}{\partial x_i} \cos \sqrt{\lambda_k} sds \langle \Phi_k, \vartheta \rangle_{L^2 (\omega)} \right] \n\end{cases}
\]

\[
\nabla \Phi_m (x) \quad x \in \Omega \setminus \omega
\]
And

\[
y_1'(x) = \left\{ \begin{array}{ll}
\frac{-2}{T} \sum_{m=1}^{\infty} \lambda_m \sum_{l=1}^{\infty} \sum_{k=1}^{M} \Phi_k(b) \int_0^T \sum_{l=1}^{\infty} \frac{\partial y}{\partial x_l}(b,s) \sin \sqrt{-\lambda_k} \sqrt{s} ds (\Phi_k, \frac{\partial \Phi_m}{\partial x_l})_L^2(\omega) \\
\left(\sum_{l=1}^{\infty} \frac{\partial \Phi_m}{\partial x_l}(b) \right)^2
\end{array} \right. \nabla \Phi_m(x) \quad \forall x \in \omega
\]

(18)

These formulae are of interest for practical use. We can make approximations by considering only \(1 \leq m \leq M\). The terms \(\sum_{i=1}^{M} \frac{\partial \Phi_m}{\partial x_l}(b)\) are \(\neq 0\) since the sensor is supposed \(G\)-strategic.

Let us the system \((1)\) and the output function \(z(t) = y(b,t) \quad b \in \Omega \quad t \in [0,T]\)

(19)

The purpose is to reconstruct the unknown gradient initial \((y_0^0, y_1^0)\) using the output function \((19)\). The couple \((y_0^0, y_1^0)\) is given by the formulae \((17), (18)\). We consider a truncation up to the order \(M\), then we obtain

\[
y_0'(x) = \left\{ \begin{array}{ll}
\frac{-2}{T} \sum_{m=1}^{\infty} \lambda_m \sum_{l=1}^{\infty} \sum_{k=1}^{M} \Phi_k(b) \int_0^T \sum_{l=1}^{\infty} \frac{\partial y}{\partial x_l}(b,s) \cos \sqrt{-\lambda_k} \sqrt{s} ds (\Phi_k, \frac{\partial \Phi_m}{\partial x_l})_L^2(\omega) \\
\left(\sum_{l=1}^{\infty} \frac{\partial \Phi_m}{\partial x_l}(b) \right)^2
\end{array} \right. \nabla \Phi_m(x) \quad \forall x \in \omega
\]

(20)

\[
y_1'(x) = \left\{ \begin{array}{ll}
\frac{-2}{T} \sum_{m=1}^{\infty} \lambda_m \sum_{l=1}^{\infty} \sum_{k=1}^{M} \Phi_k(b) \int_0^T \sum_{l=1}^{\infty} \frac{\partial y}{\partial x_l}(b,s) \sin \sqrt{-\lambda_k} \sqrt{s} ds (\Phi_k, \frac{\partial \Phi_m}{\partial x_l})_L^2(\omega) \\
\left(\sum_{l=1}^{\infty} \frac{\partial \Phi_m}{\partial x_l}(b) \right)^2
\end{array} \right. \nabla \Phi_m(x) \quad \forall x \in \omega
\]

(21)

We define a final error (depending on the choice of the sensor location \(b\)) by considering

\[
E^2 = \Box y^0 - \bar{y}_0^0 \Box^2_L(\omega) + \Box y^1 - \bar{y}_1^0 \Box^2_L(\omega)
\]

(22)

The good choice of \(M\) will be such that \(E \leq \varepsilon\) where \(\varepsilon\) is precision test assumed to be small enough.

The general algorithm for computing \(\bar{y}_0^0\) and \(\bar{y}_1^0\) is the following:

Algorithm:

1. Choice of the sensor location \(b\) and \(\varepsilon\).
2. Repeat
 - Choice of the approximation order \(M\).
 - Computation of \(y^0\) and \(\bar{y}_0^0\) by the formulae \((20)\) and \((21)\).
 - \(M \leftarrow M + 1\).

Until \(E \leq \varepsilon\).
3. The estimated initial conditions \hat{y}_1^0 and \hat{y}_1^1 corresponds to the initial gradient to be observed in the subregion ω.

7. SIMULATIONS-EXAMPLE

In this section we present a numerical example, the results are related to the choice of the subregion and the gradient to be observed. Consider the system.

\[
\begin{align*}
\frac{\partial^2 y}{\partial t^2}(x,t) &= 0.01 \frac{\partial^2 y}{\partial x^2}(x,t) \quad \text{in } [0,1] \times [0,T] \\
y(x,0) &= y^0(x) \quad , \quad \frac{\partial y}{\partial t}(x,0) = y^1(x) \quad \text{in } [0,1] \\
y(0,t)=y(1,t)=0 \quad \text{on } [0,T]
\end{align*}
\]

(23)

Let's consider $\omega=[0.20,0.80]$ and $y^0(x) = \alpha(2x^3 - 3x^2 + x)$ and $y^1(x) = \beta x(1-x)(2x-1)$ be the initial gradient to be observed in ω.

For numerical considerations, α and β are chosen in order to produce a reasonable amplitude for y_1^0 and y_1^1. Here the output is given by means of a pointwise sensor $z(t) = y(b,t)$ with $b = 0.54$ and $T = 6$, then we obtain the following figures.

Fig 7: The exact (continuous line) and estimated (dashed line) state gradient in ω.

Fig 8: The exact (continuous line) and estimated (dashed line) speed gradient in ω.
The reconstruction is obtained with error equals to: \(E = 1.72 \times 10^{-2} \).

For \(\omega = \Omega \) we have the following results:

For \(\omega = \Omega \) we have the following results:

Fig 9: The exact (continuous line) and estimated (dashed line) state gradient in \(\omega \).

Fig 10: The exact (continuous line) and estimated (dashed line) speed gradient in \(\omega \).

7.1. Reconstruction error - subregion area

Here we study numerically the dependence of the gradient reconstruction error with respect to the subregion area of \(\omega \), we have the following table.

Table 1: The reconstruction error with respect to the subregion area.

<table>
<thead>
<tr>
<th>The subregion</th>
<th>Reconstruction error</th>
</tr>
</thead>
<tbody>
<tr>
<td>([0, 1])</td>
<td>(4.8672 \times 10^{-2})</td>
</tr>
<tr>
<td>([0.10, 0.90])</td>
<td>(3.7339 \times 10^{-2})</td>
</tr>
<tr>
<td>([0.15, 0.85])</td>
<td>(2.6591 \times 10^{-2})</td>
</tr>
<tr>
<td>([0.25, 0.85])</td>
<td>(1.8642 \times 10^{-2})</td>
</tr>
<tr>
<td>([0.20, 0.80])</td>
<td>(1.7255 \times 10^{-2})</td>
</tr>
<tr>
<td>([0.24, 0.78])</td>
<td>(1.2939 \times 10^{-2})</td>
</tr>
</tbody>
</table>
From Table 1, we note that the reconstruction error and the subregion area increase or decrease. This means that the larger the subregion error is the greater the error is. The G-observability is realized by means of one pointwise sensor located at $b = 0.54$. The results are similar for other types of sensors.

8. CONCLUSION

In this work, we studied the notion of regional gradient observability of hyperbolic systems in connection with the sensors parameters. The obtained results are applied to the wave equation in one and two dimensional cases and which give characterization of sensors location. The obtained results are illustrated through numerical example and simulations and can be extended to the boundary case.

ACKNOWLEDGMENTS

Our thanks to the experts who have contributed towards development of the template.

REFERENCES

Author’ biography with Photo

A. Boutoulout is a professor at the University Moulay Ismail of Meknes in Morocco. He obtained his Doctorat d’Etat in System Regional Analysis (2000) at University Moulay Ismail. Professor Boutoulout has published many paper in the area of system analysis and control. Now he is the head of the research team STI (System Theory and Informatics) and a director of Master System Theory and Informatics, in department of Mathematics and Informatics of Faculty of Sciences at the University Moulay Ismail, of Meknes in Morocco.

E-mail : boutouloutali@yahoo.fr

H. Bourray is a professor at the University Moulay Ismail of Meknes in Morocco. He is an assistant professor at the same University. He got his Doctorat in Systems Analysis (2002) at the Faculty of Sciences in Meknes. He is a researched at STI Team, MACS Laboratory at the University Moulay Ismail of Meknes in Morocco.

E-mail address: hbourrayh@yahoo.fr

A. Khazari is a researcher, preparing his Doctorat in Applied Mathematics at the University Moulay Ismail, of Meknes in Morocco. His research area is focused on analysis and control of distributed systems and numerical analysis. At present he is a searcher at STI Team, MACS Laboratory at University Moulay Ismail of Meknes Morocco.

E-mail address: adil0974i@gmail.com