ASSESSMENT OF CARBON SEQUESTRATION OF DIFFERENT TREES SPECIES GROWN UNDER AGROFORESTRY SYSTEM

  • MANABENDRA DEKA Scientist, Regional Muga Research Station, Central Silk Board, Boko - 781123, Assam, INDIA
  • AFAQ M. WANI Associate Professor, School of Forestry and Enviromment, Sam Higginbottom Institute of Agriculture, Technology and Sciences, Allahabad – 211007, INDIA
  • MAJID HUSSAIN M.Sc.(Forestry) Student, School of Forestry and Enviromment, Sam Higginbottom Institute of Agriculture, Technology and Sciences, Allahabad – 211007, INDIA
Keywords: Tree species, agro-forestry, above ground biomass, fixed carbon, greenhouse gases, carbon sequestration, carbon sequestration efficiency etc

Abstract

An experiment was carried out to estimate the carbon stock available in the above ground parts of five different tree species; Populus deltoides, Bombax ceiba, Euclyptus hybrid, Leuceana leucocephela and Bauhania variegata grown under agro-forestry system by non destructive method with a view to step-in carbon inventories and data-bank on carbon sequestration potential of different plantations. It was found that amongst the selected tree species of same age group Bombax ceiba (58.955 kg/tree) followed by Bauhinia variegata (26.020 kg/tree), Populus deltoides (23.155 kg/tree) and Eucalyptus hybrid (22.379 kg/tree) showed the highest carbon sequestration capacity. However, Leucaena leucocephala (50.93%) was found to be the most efficient carbon sequester followed by Bauhinia variegata (47.67%), which might be due to nitrogen fixing ability of these two species

References

1. Berg, B. 2000. Litter decomposition and organic matter turnover in northern forest soils. For. Ecol. Management. 133:13–22. 2. Brown, S. J., Sathaye, J., Cannel, M. and Kauppi, P. 1996. In: “Management of forests for mitigation of greenhouse gas emissions”. Watson, R.J., M.C. Zinyowera and R.H. Moss (Eds). Climate change 1995: Impacts, adaptations and mitigation of climate change: Scientific – technical analyses. Cambridge University Press, NY. 3. Chaturvedi, A. N. and Khanna, L. S. 1982. In: “Forest mensuration”. International Book Distributors, Dehra Dun. 4. Cochran, W. G. and Cox, G.M. 1963. In: “Experimental design”. John Willey and Sons, Inc. New York, USA. 5. Eswaran, H., Reich, P. F., Kimble, J. M., Beinroth, F. H., Padmanabhan, E. and Moncharoon, P. 2000. In: “Global carbon stocks. Global Climate Change and Pedogenic Carbonates”. Lal, R., J.M. Kimble, H. Eswaran, B.A. Stewart (Eds). pp. 15-25. 6. Gifford, R. M. 2000a. Carbon content of above-ground tissues of forest and woodland trees. Australian Greenhouse Office, National Carbon Accounting System Technical Report-22.18pp. 7. Gifford, R.M. 2000. Carbon content of wood roots. Revised analysis and a comparison with woody shoot components. Australian Greenhouse Office, National Carbon Accounting System Technical Report-7,18pp. 8. Harmon, M. E., Ferrell, W. K. and Franklin, J. F. 1990. Effects of carbon storage of conversion of old growth forests to young forests. Science. 247: 699-702. 9. IPCC. 1996. In: “Climate change: The Science of Climate Change Report of Working Group 1”. Houghton, J.T., L.G. Meira, B. Filho, A. Callander, N. Harris, A. Kattenberg and K. Maskell (Eds). Cambridge University Press, New York. p. 4. 10. Kraenzel, M., Alvaro, C., Tim, M. and Catherine, P. 2003. Carbon Storage of harvest age teak (Tectona grandis) plantations, Panama. For. Ecol. Management. 173: 213-225. 11. Parameswarappa, S. 1995. Teak – How fast can it grow and how much can it pay. Indian Forester. 121(6): 563565. 12. Paustian, K., Robertson, G. P. and Elliot, E. T. 1995. Management impacts on carbon storage and gas fluxes (CO2, CH4) in mid-latitudes cropland. In: Soils and global change-Advances in soil sciences. Lal et al. (Eds). CRC Press, Boca Raton, FL. pp. 69-83. 13. Ramachandran, A., Jayakumar, S. Haroon, R. M., Bhaskaran, A. and Arockiasamy, D. I. 2007. Carbon sequestration: estimation of carbon stock in natural forests using geospatial technology in the Eastern Ghats of Tamil Nadu, India. Current Science. 92(3): 323-331. 14. Ravindranath, N. H., Somashekhar, B. S., and Gadgil, M. 1997. Carbon flows in Indian forests. Climatic Change. 35B: 297-320. 15. Ravindranath, N. H., Chaturvedi, R. K. and Murthy, I. K. 2008. Forest Conservation, afforestation and reforestation in India: Implications for Forest Carbon Stocks. Current Science. 95(2): 216-222. 16. Rawat, L., Kamboj, S. K., Deepak, K. and Arun, K. 2008. Biomass/productivity and nutrient retention in some Dalbergia sissoo Roxb. plantations of Punjab, Indian J. For. 31(4): 509-516. 17. Resh, S. C., Binkley, D. and Parrotta, J. A. 2002. Greater soil carbon sequestration under Nitrogen-fixing trees compared with eucalyptus species. Ecosystems. 5: 217–231. 18. Sedjo, R. A. 1989. Forests to off-set the greenhouse. J. For. 87: 12-15. 19. Sedjo, R. A. 1999. Potential for carbon forest plantations in marginal timber forests: The case of Patagonia, Argentina. RFF Discussion 99-27. Washington, DC: Resource for the future. 20. Srivastava, A. K. 1994. Productivity and economics of some commercially important forest trees. Indian Forester. 120: 12-29. 21. Srivastava, A. K. 1995. Biomass and energy in Casuarina equisetifolia plantation in degraded dry tropical of Vindhyan plateau, India. Biomass and Bioenergy. 9(6): 465-471. 22. Tandon, V. N., Pandey, M. C. S., Rawat, H. S. and Sharma, D. C. 1991. Organic productivity and mineral cycling in plantation of Populus deldoides in Tarai region of UP. Indian Foreste. 117(8): 596-607. 23. TAPPI Test Method. 1993. In: Technical Association of Pulp and Paper Industry, T 204 OM-08, Tappi Press, Atlanta. 24. UN FAO. 1993. Forest resources assessment 1990. Tropical Countries, FAO Forestry Paper 112, Rome, Italy. 25. Wang, J. K., Zhong, A. L., Comeau, P., Tsze, M. and Kimmins, J. P. 1995. Above ground biomass and nutrient accumulation in an age sequence of aspen (P. tremuloides) in the boreal White and Black spruce Zone, British Colombia. For. Ecol. Management. 78: 127-138
Published
2016-12-22
Section
Articles