Organic Compounds Generated in Bioethanol Production from Agave Bagasse

Bioethanol production by yeast

  • Jorge A. Mejía-Barajas, PhD Universidad Michoacana de San Nicolás de Hidalgo. Instituto de Investigaciones Químico-Biológicas.
  • Melchor Arellano-Plaza, PhD Centro de Investigación y Asistencia en Tecnología y Diseño del Estado de Jalisco, A.C., Guadalajara, México.
  • Belem Vargas-Ochoa, MSc Universidad Michoacana de San Nicolás de Hidalgo. Instituto de Investigaciones Químico-Biológicas.
  • Rafael Salgado-Garciglia, PhD Universidad Michoacana de San Nicolás de Hidalgo. Instituto de Investigaciones Químico-Biológicas.
  • Jesús Campos-García, PhD Universidad Michoacana de San Nicolás de Hidalgo. Instituto de Investigaciones Químico-Biológicas.
  • Alfredo Saavedra-Molina Universidad Michoacana de San Nicolás de Hidalgo
Keywords: Agave bagasse;, Bioethanol, By-products, Fermentation, Organic compounds


In bioethanol production through lignocellulosic residues fermentations are generated by-products such as organic compounds (OCs). The organic compounds (OCs) had been well studied in wine and beer industry, but little is known about their presence in bioethanol industry, even when these affect yeasts physiologic state, and are considered as economically desirable in the chemical industry. In this work was evaluated the production of OCs in bioethanol production processes through separate hydrolysis and fermentation (SHF) and simultaneous saccharification and fermentation (SSF) of different agave bagasse residue (ABR). Fermentations were carried out by the Kluyveromyces marxianusSLP1, K. marxianus OFF1 and Saccharomyces cerevisiaeEthanol Red yeasts strains. The main OCs detected were ethyl acetate, methanol, 1-propanol, isobutanol, butanol, isoamyl-alcohol, ethyl-lactate, furfuryl-alcohol, phenyl-acetate, and 2-phenyl ethanol. A higher number of OCs was found in the SSF process when were used the K. marxianusOFF1 and SLP1 yeasts. This study provides better knowledge of the kind and concentrations of OCs produced by fermentation of the lignocellulosic ABR, which allow propose bioethanol by-products as potential source of economically desirable compounds.

Author Biography

Jorge A. Mejía-Barajas, PhD, Universidad Michoacana de San Nicolás de Hidalgo. Instituto de Investigaciones Químico-Biológicas.

Departamento de Bioquímica. Instituto de Investigaciones Químico-Biológicas.


1. Wang, Z.X., Zhuge, J., Fang, H., Prior, B.A. Glycerol production by microbial fermentation: a review. Biotechnology Advances, 2001. 19(3): p. 201-223.

2. Johnson, E.A. Biotechnology of non-Saccharomyces yeasts-the ascomycetes. Applied Microbiology and Biotechnology, 2013. 97: p. 503–517.

3. Liu, L., Redden, H., Alper, H.S. Frontiers of yeast metabolic engineering: diversifying beyond ethanol and Saccharomyces. Current Opinion in Biotechnology, 2013. 24(6): p. 1023-1030.

4. Tesfaw, A., Assefa, F. Current Trends in Bioethanol Production by Saccharomyces cerevisiae: Substrate, Inhibitor Reduction, Growth Variables, Coculture, and Immobilization. International Scholarly Research Notices, 2014. 2014: Article ID 532852. P. 1-11.

5. Hernández-Salas, J.M., Villa-Ramírez, M.S., Veloz-Rendón, J.S., Rivera-Hernández, K.N., González-César, R.A., Plascencia-Espinosa, M.A. Comparative hydrolysis and fermentation of sugarcane and agave bagasse, Bioresource Technology, 2009. 100: p. 1238–1245.

6. Saucedo-Luna, J., Castro-Montoya, A., Martinez-Pacheco, M., Sosa-Aguirre, C., Campos-Garcia, J. Efficient chemical and enzymatic saccharification of the lignocellulosic residue from Agave tequilana bagasse to produce ethanol by Pichia caribbica, Journal of Industrial Microbiology & Biotechnology, 2011. 38: p. 725–732.

7. Pérez-Pimienta, J.A., Lopez-Ortega, M.G., Varanasi, P., Stavila, V., Cheng, G., Singh, S. Comparison of the impact of ionic liquid pretreatment on recalcitrance of agave bagasse and switch grass. Bioresource Technology, 2013. 127: p. 18-24.

8. Caspeta, L., Caro-Bermúdez, M.A., Ponce-Noyola, T., Martinez, A. Enzymatic hydrolysis at high-solids loadings for the conversion of agave bagasse to fuel ethanol. Applied Energy, 2014. 113: p. 277-286.
9. Urit, T., Li, M., Bley, T., Loser, C. Growth of Kluyveromyces marxianus and formation of ethyl acetate depending on temperature. Applied Microbiology and Biotechnology, 2013. 97: p 10359-10371.

10. Morrissey, J.P., Etschmann, M., Schrader, J., Billerbeck, G.M. Cell factory applications of the yeast Kluyveromyces marxianus for the biotechnological production of natural flavour and fragrances molecules. Yeast, 2015. 32: p. 3-16.

11. Molina, A.M., Guadalupe, V., Varela, C., Swiegers, J.H., Pretorius, I.S., Agosin, E. Differential synthesis of fermentative aroma compounds of two related commercial wine yeast strains. Food Chemistry, 2009. 117: p. 189-195.

12. Olaniran, A., Maharaj, Y., Pillay, B. Effects of fermentation temperature on the composition of beer volatile compounds, organoleptic quality and spent yeast density. Electronic Journal of Biotechnology, 2011. 2011: p. 1-10.

13. Gethins, L., Güneşer, O., Demirkol, A., Rea, M.C., Stanton, C., Ross, R.P., Yuceer, Y., Morrissey, J.P. Influence Of Carbon And Nitrogen Source On Production Of Volatile Fragrance And Flavour Metabolites By The Yeast Kluyveromyces Marxianus. Yeast, 2015. 32: p. 67-76.

14. Groeneveld, P., Stouthamer, A.H., Westerhoff, H.V. Super life-how and why ’cell selection’ leads to the fastest-growing eukaryote. FEBS Journal, 2009. 276: p. 254–270.

15. Gschaedler, A., Ramírez, J., Díaz, D., Herrera, E., Arrizón, J., Pinal, L., Arellano, M. Fermentación. En: Ciencia y Tecnología del Tequila Avances y Perspectivas. CIATEJ, Guadalajara, Jalisco, México, 2004. 61-120.

16. Cedeño-Cruz, M. Tequila production from agave; historical influences and contemporary processes. The alcohol textbook. 4th ed. Nottingham University Press, 2003. p. 223–245.

17. Flores, J.A., Gschaedler, A., Amaya-Delgado, L., Herrera-López, E.J., Arellano, M., Arrizon, J. Simultaneous saccharification and fermentation of Agave tequilana fructans by Kluyveromyces marxianus yeasts for bioethanol and tequila production. Bioresource Technology, 2013. 146: p. 267-273.

18. Strober, W. Trypan blue exclusion test of cell viability. Current Protocols in Immunology, 2001. 21: p. A.3B.1-A.3B.2.

19. Girio, F.M., Fonseca, C., Carvalheiro, F., Duarte, L.C., Marques, S., Bogel-Lukasik, R. Hemicelluloses for fuel ethanol: A review. Bioresource Technology, 2010. 13: p. 4775-4800.

20. Isikgora, F.H., Becer, C.R. Lignocellulosic biomass: a sustainable platform for the production of bio-based chemicals and polymers. Polymer Chemistry, 2015. 6: p. 4497-4559.

21. Tequila Regulatory Council. Total production of tequila. 2010. Retrieved from. .

22. Barrera, I., Amezcua-Allieri, M.A., Estupiñan, L., Martínez, T., Aburto, J. Technical and economical evaluation of bioethanol production from lignocellulosic residues in Mexico: Case of sugarcane and blue agave bagasses. Chemical Engineering Research and Design, 2016. 107: p. 91-101.

23. Styarini, D., Aristiawan, Y., Aulia, F., Abimanyu, H., Sudiyani, Y. Determination of organic impurities in lignocellulosic bioethanol product by GC-FID. Energy Procedia, 2013. 32: p. 153-159.

24. Rossouw, D., Naes, T., Bauer, F.F. Linking gene regulation and the exo-metabolome: A comparative transcriptomics approach to identify genes that impact on the production of volatile aroma compounds in yeast. BMC Genomics, 2009. 9: p. 530-548.

25. Carlquist, M., Gibson, B., Yüceer, Y., Paraskevopoulou, A., Sandell, M., Angelov, A.I., Gotcheva, V., Angelov, A.D., Etschmann, M., Billerbechk, G.M., Lidén, G. Process Engineering For Bioflavour Production With Metabolically Active Yeasts - A Mini-Review. Yeast, 2015. 32: p. 123-143.

26. Medeiros, A.B.P., Pandey, A., Christen, P., Freitas, R.J.S., Fontoura, P.S.G., Soccol, C.R. Aroma compounds produced by Kluyveromyces marxianus in solid state fermentation on a packed bed column bioreactor. World Journal of Microbiology & Biotechnology, 2001. 17: p. 767-771.

27. Bramorski, A., Christen, P., Ramirez, M., Soccol, C.R., Revah, S. Production of volatile compounds by the fungus Rhizopus oryzae during solid state cultivation on tropical agroindustrial substrates. Biotechnology Letters, 1998. 20: p. 359-362.

28. Soares, M., Christen, P., Pandey, A., Soccol, C.R. Fruity flavor production by Ceratocystis fimbriata grown on coffee husk in solid-state fermentation. Process Biochemistry, 2000. 35: p. 857-861.

29. Tomas-Pejo, E., Garcia-Aparicio, M., Negro, M.J., Oliva, J.M., Ballesteros, M. Effect of different cellulase dosages on cell viability and ethanol production by Kluyveromyces marxianus in SSF processes. Bioresource Technology, 2009. 100: p. 890–895.

30. López-Alvarez, A., Díaz-Pérez, A.L., Sosa-Aguirre, C., Macías-Rodríguez, L., Campos-García, J. Ethanol yield and volatile compound content in fermentation of agave must by Kluyveromyces marxianus UMPE-1 comparing with Saccharomyces cerevisiae baker´s yeast used in tequila production. Journal of Bioscience and Bioeng ineering, 2012. 113(5): p. 614-618.

31. Ali, K., Maltese, F., Choi, Y.H., Verpoorte, R. Metabolic constituents of grapevine and grape-derived products. Phytochemistry Reviews, 2010. 9: p. 357-378.

32. Casas, R. Between traditions and modernity: Technological strategies at three tequila firms. Techhnology in Society, 2006. 28: p. 407-419.

33. Löser, C., Urit, T., Keil, P., Bley, T. Perspectives for the biotechnological production of ethyl acetate by yeasts. Applied Microbiology and Biotechnology, 2014. 98: p. 5397–5415.

34. Löser C, Urit T, Keil P, Bley T (2015) Studies on the mechanism of synthesis of ethyl acetate in Kluyveromyces marxianus DSM 5422. Applied Microbiology and Biotechnology, 2015. 99(3): p. 1131-1144.

35. Wittmann, C., Hans, M., Bluemke, W. Metabolic physiology of aroma producing Kluyveromyces marxianus. Yeast, 2002. 19(15): p. 1351-1363.

36. Kim, B., Cho, B.R., Hahm, J.S. Metabolic engineering of Saccharomyces cerevisiae for the production of 2-phenylethanol via Erlich pathway. Biotechnol Bioeng, New York, 2014. 111: p. 115-124.

37. Etschmann, M.M., Bluemke, W., Sell, D., Schrader, J. Biotechnological production of 2-phenylethanol. Applied Microbiology and Biotechnology, 2002. 59: p. 1-8.

38. Wang, H., Dong, Q., Guan, A., Meng, C., Shi, X., Guo, Y. Synergistic inhibition effect of 2-phenylethanol and ethanol on bioproduction of natural 2-phenylethanol by Saccharomyces cerevisiae and process enhancement. Journal of Bioscience and Bioengineering, 2011. 112: p. 26-31.

39. Etschmann, M.M., Sell, D., Schrader, J. Screening of yeasts for the production of the aroma compound 2-phenylethanol in a molasses-based medium. Biotechnology Letters, 2003. 25: p. 531-536.

40. Etschmann, M.M., Sell, D., Schrader, J. Production of 2-phenylethanol and 2 phenylethylacetate from L-phenylalanine by coupling whole-cell biocatalysis with organophilic pervaporation. Biotechnology and Bioengineering, 2005. 92: p. 624-634.
41. Gao, F., Dauguli, J. Bioproduction of the Aroma Compound 2-Phenylethanol in a Solid–Liquid Two-Phase Partitioning Bioreactor System by Kluyveromyces marxianus. Biotechnology and Bioengineering, 2009. 104: p. 332-339.

42. Arellano M, Gschaedler A, Alcazar M (2012) Major Volatile Compounds Analysis Produced from Mezcal Fermentation Using Gas Chromatography Equipped Headspace (GC–HS) Gas Chromatography in Plant Science, Wine Technology, Toxicology and Some Specific Applications.

43. Peters, M.W., Taylor, J.D., Jenni, M., Manzer, L., Henton, D.E. Integrated process to selectively convert renewable isobutanol to P-xylene. Gevo patent US 2011087000 (A1).

44. Lee, S.Y., Park, J.H., Jang, S.H., Nielsen, L.K., Kim, J., Jung, K.S. Fermentative Butanol Production by Clostridia. Biotechnology and Bioengineering, 2008. 101: p. 209-228.

45. Zlokazov, M.V., Veselovsky, V.V. A novel polyfunctional chiral building block derived from (S)-ethyl-lactate. Application to the synthesis of the sex pheromone of the southern corn root worm (Diabrotica undecimpunctata howardi). Russian Chemical Bulletin, 2000. 49: p. 154-158.

46. Belloch, C., Orlic, S., Barrio, E., Querol, A. Fermentative stress adaptation of hybrids within the Saccharomyces sensu stricto complex. International Journal of Food Microbiology, 2008. 122: p. 188-195.

47. Mannazzu, I., Angelozzi, D., Belviso, S., Budroni, M., Farris, G.A., Goffrini P., Lodi, T., Marzona, M., Bardi, L. Behaviour of Saccharomyces cerevisiae wine strains during adaptation to unfavourable conditions of fermentation on synthetic medium: cell lipid composition, membrane integrity, viability and fermentative activity. International Journal of Food Microbiology, 2008. 15: p. 84-91.

48. Lalou, S., Mantzouridou, F., Paraskevopoulou, A., Bugarski, B., Levic, S., Nedovic, V. Bioflavour production from orange peel hydrolysate using immobilized Saccharomyces cerevisiae. Applied Microbiology Biotechnology, 2013. 97: p. 9397-9407.

49. Rossi, S.C., Vandenberghe, L.P.S., Pereira, B.M.P., Gago, F.D., Rizzolo, J.A., Pandey, A., Soccol, C.R., Medeiros, A.B.P. Improving fruity aroma production by fungi in SSF using citric pulp. Food Research International, 2009. 42: p. 484-486.