Modification of Topsoil Physico-Chemical Characteristics and Macroinvertebrates Structure Consecutive to the Conversion of Secondary Forests into Rubber Plantations in Grand-Lahou, Côte d’Ivoire

  • Dr. NDRI Kouadio Julien Université Nangui Abrogoua
  • Kévin Kouadio N’Guessan Université Nangui Abrogoua
Keywords: Soil Physico-Chemical Characteristics, Communities Structure of Macroinvertebrates, Secondary Forests Conversion, Soil Ecological Quality, Chronosequence, Rubber Plantations


The objective of this investigation was to assess the modifications of topsoil physico-chemical characteristics and macroinvertebrates structure consecutive to the conversion of secondary forests into rubber plantations and how these change with the aging of the plantations and the season. The sampling design was constituted of four treatments: secondary forest referred to as baseline land-use, 7-, 12- and 25-year-old rubber plantations. Three replications per land use type were randomly established in each of the selected treatments, thus totaling 12 sampling areas. On each sampling area, a 40 m transect was established. The litter dwelling and topsoil (0−10 cm) macroinvertebrates were sampled, respectively, by using the pitfall traps and monoliths (50 cm × 50 cm × 10 cm) following the Tropical Soil Biology and Fertility method. The soil physical and chemical parameters were measured along the 40 m transect. The results showed that the conversion of secondary forest into plantations was characterized by a modification of the density of soil macroinvertebrates (dry season: −50 and −24% vs. rainy season: −61 and +32%), taxonomic richness of soil macroinvertebrates (dry season:  +7 and −14% vs. rainy season: −21 and −14%), water content (dry season: −41 and −5% vs. rainy season: −62 and −31%), bulk density (dry season: +6 and −3% vs. rainy season: +33 and +29%), soil organic carbon (dry season: −73 and −59% vs. rainy season: −67 and −51%) and total nitrogen (dry season: −68 and −58% vs. rainy season: −64 and −52%), respectively, after about 7 and 25 years of conversion. The restoration processes did not cause significant changes in the soil physico-chemical and biological characteristics after 25 years of forests conversion. However, the study highlighted the improvement in the soil ecological quality due to a reduction in soil degradation, and an increase in the density of macroinvertebrates (+235%), taxonomic richness (+9%), water content (+84%), soil organic carbon (+50%) and total nitrogen (+33%) in the 25-year-old plantations compared to the 7-year-old plantations.

Author Biographies

Dr. NDRI Kouadio Julien, Université Nangui Abrogoua
Ecology and Ecosystem Management UFR-SN / Ecology Research Centre Université Nangui Abrogoua 02 BP 801 Abidjan 02 Côte d'Ivoire, cel +225 07 49 38 08
Kévin Kouadio N’Guessan, Université Nangui Abrogoua

Unité de Formation et de Recherche (UFR) des Sciences de la Nature / Université Nangui Abrogoua, 02 BP 801 Abidjan 02, Côte d’Ivoire


Keenan R.J., Reams G.A., Achard F., De Freitas J.V., Grainger A. and Lindquist E. 2015. Dynamics of global f[1] Aerts R. 1997. Climate, leaf litter chemistry and leaf litter decomposition in terrestrial ecosystems: a triangular relationship. Oikos, 79: 439–449.
[2] Anderson J.M. and Ingram J.S.I. 1993. Tropical soil biology and fertility: a handbook of methods. 2nd edition. CABI. Wallingford
[3] Assié K.H., Angui P. and Tamia A.J. 2008. Effets de la mise en culture et des contraintes naturelles sur quelques propriétés physiques d’un sol ferrallitique au Centre Ouest de la Côte d’Ivoire : Conséquences sur la dégradation des sols. Eur. J. Sci. Res., 23: 149–166.
[4] Bachelier G. 1978. La faune des sols, son écologie et son action. ORSTOM, Paris, France
[5] Bardgett R.D. 2005. The biology of soil. A community and ecosystem approach. Oxford University Press, Oxford, UK
[6] Chao A., Chazdon R.L., Colwell R.K. and Shen T.J. 2005. A new statistical approach for assessing similarity of species composition with incidence and abundance data. Ecol. Lett., 8: 148–159.
[7] Chaudhuri P.S., Bhattacharjee S., Dey A., Chattopadhyay S. and Bhattacharya D. 2013. Impact of age of rubber (Hevea Brasiliense’s) plantation on earthworm communities of West Tripura (India). J. Environ. Biol., 34: 59–65.
[8] Chaudhuri P.S. and Nath S. 2011. Community structure of earthworms under rubber plantations and mixed forests in Tripura, India. J. Environ. Biol., 32: 537–541.
[9] Chaudhuri P.S., Nath S., Pal T.K. and Dey S.K. 2009. Earthworm casting activities under rubber (Hevea brasiliensis) plantations in Tripura (India). World J. Agric. Sci., 5: 515–521.
[10] Chaudhuri P.S., Nath S. and Paliwal R. 2008. Earthworm population of rubber plantations (Hevea brasiliensis) in Tripura, India. Trop. Ecol., 49 : 225–234.
[11] CNRA .2013. Le centre national de recherche agronomique en 2012. Nous inventons aujourd’hui l’agriculture de demain. Accessed 25 Jan 2015
[12] Coleman D.C., Crossley Jr D.A. and Hendrix P.F. 2004. Fundamentals of soil ecology (2nd ed.). Academic Press, Burlington, U.S.A.
[13] Colwell R.K. 2005. EstimateS: statistical estimation of species richness and shared species from samples. Version 7.5. Persistent
[14] Dash M.C. and Behera N. 2013. Carbon sequestration and role of earthworms in Indian land uses: a review. The ecoscan, 7: 1–7.
[15] Dawoe E.K., Quashie-Sam J.S. and Oppong S.K. 2014. Effect of land-use conversion from forest to cocoa agroforest on soil characteristics and quality of a ferric lixisol in lowland humid Ghana. Agroforest. Syst., 88: 119–127.
[16] Decaëns T. 2010. Macroecological patterns in soil communities. Glob. Ecol. Biogeogr., 19: 287–302.
[17] Dosso K., Deligne J., Yéo K., Konate S. and Linsenmair K.E. 2013. Changes in the termite assemblage across a sequence of land-use systems in the rural area around Lamto reserve in central Côte d’Ivoire. J. Insect Conserv., 17 : 1047–1057.
[18] Ettian M.K., Soulemane O. and Tahoux T.M. 2009. Influence du régime alimentaire sur l’intervalle de parturition des aulacodes en captivité dans la région de Grand-Lahou (Côte d’Ivoire, Afrique de l’Ouest). J. Anim. Plant Sci., 4: 311–319.
[19] FAO .2005. Global forest resources assessment 2005. Progress towards sustainable forest management. FAO Forestry Paper 147, Rome
[20] Gilot C., Lavelle P., Blanchart E., Keli J., Kouassi P. and Guillaume J. 1995. Biological activity of soil under plantations in Côte d'Ivoire. Acta Zool. Fennica, 196: 186–189.
[21] Guéi A.M., Baidai Y., Tondoh J.E. and Huising J. 2012. Functional attributes: compacting vs decompacting earthworms and influence on soil structure. Curr. Zool., 58: 555–564.
[22] Hasegawa M., Okabe K., Fukuyama K., Makino S., Okochi I., Tanaka H., Goto H., Mizoguchi T. and Sakata T. 2012. Community structures of Mesostigmata, Prostigmata and Oribatida in broad-leaved regeneration forests and conifer plantations of various ages. Exp. Appl. Acarol. doi :10.1007/s10493-012-9618-x
[23] Hedde M. 2006. Etude de la relation entre la diversité des macro-invertébrés et la dynamique de la matière organique des sols limoneux de Haute-Normandie. Mémoire de thèse de doctorat en écologie. Ecole Doctorale Normande Chimie-Biologie. Université de Rouen, France
[24] Hooper D.U., Chapin F.S., Ewel J.J., Hector A., Inchausti P., Lavorel S., Lawton J.H., Lodge D.M., Loreau M., Naeem S., Schmid B., Setälä H., Symstad A.J., Vandermeer J. and Wardle D.A. 2005. Effects of biodiversity on ecosystem functioning: a consensus of current knowledge. Ecol. Monogr., 75: 3–35.
[25] IPCC .2001. Climate change 2001: the scientific basis. Contribution of working group I to the IPCC. Third assessment report. Cambridge university press, Cambridge
[26] orest area: results from the FAO global forest resources assessment 2015. For. Ecol. Manage., 352: 9–20.
[27] Kurzatkowski D., Martius C., Höfer H., Garcia M., Förster B., Beck L. and Vlek P. 2004. Litter decomposition, microbial biomass and activity of soil organisms in three agroforestry sites in central Amazonia. Nutr. Cycl. Agroecosys., 69: 257–267.
[28] Marichal M., Grimaldi M., Feijoo M.A., Oszwald J., Praxedes C., Cobo D.H.R., Hurtado M.D.P., Desjardins T., Mario L.S.J., Costa L.G.S., Miranda I.S., Oliveira M.N.D., Brown G.G., Tsélouiko S., Martins M.B.M., Decaëns T., Velasquez E. and Lavelle P. 2014. Soil macroinvertebrate communities and ecosystem services in deforested landscapes of Amazonia. Appl. Soil Ecol., 83: 177–185.
[29] Martius C., Höfer H., Garcia M.V.B., Römbke J. and Hanagarth W. 2004. Litter fall, litter stocks and decomposition rates in rainforest and agroforestry sites in central Amazonia. Nutr. Cycl. Agroecosys., 68: 137–154.
[30] N’Dri J.K., Pokou P.K., Seka F.A., N’Da R.A.G. and Lagerlöf J. 2017b. Edaphic characteristics and bioindication of environmental impact on soil mite (Acari) communities following a rubber chronosequence in Côte d’Ivoire. Acarologia. In press
[31] N’Dri J.K., Seka F.A., Pokou P.K., N’Da R.A.G. and Lagerlöf J. 2017a. Abundance and diversity of soil mite (Acari) communities after conversion of tropical secondary forest into rubber plantations in Grand-Lahou, Côte d’Ivoire. Ecol. Res., 32: 909–919.
[32] Nath S. and Chaudhuri P.S. 2010. Human-induced biological invasions in rubber (Hevea brasiliensis) plantations of Tripura (India)-Pontoscolex corethrurus as a Case study in Tripura, India. Asian J. Exp. Biol. Sci., 1: 360–369.
[33] Obouayeba S., Gnagne Y.M., Wahounou P.J., Boko C., Sylla S., Kéli Z.J. and Déa G.B. 2006. Bien cultiver l’hévéa en Côte d’Ivoire. Fiche technique de l’ hévéa n°1. Centre national de recherche agronomique, Abidjan, Côte d’Ivoire
[34] Redford K.H. and Richter B.D. 1999. Conservation of biodiversity in a world of use. Conserv. Biol., 13 : 1246–1256.
[35] Ruf F. 2009. L’adoption de l’hévéaculture en Côte d’Ivoire prix, imitation et changement écologique. Session: innovation des agricultures familiales et politiques publiques. Le cas de l’hévéaculture. 3èmes journées de recherches en sciences sociales. INRA-SFER-CIRAD, Montpellier, France. Accessed 15 Feb 2015
[36] Sabu T.K. and Vinod K.V. 2009. Population dynamics of the rubber plantation litter beetle Luprops tristis, in relation to annual cycle of foliage phenology of its host, the para rubber tree, Hevea brasiliensis. J. Insect Sci., 9 : 1–10.
[37] Tardif A. 2013. Prédiction des taux de décomposition des litières végétales par les traits fonctionnels agrégés. Mémoire de thèse (cotutelle) de doctorat en écologie. Ecole doctorale sciences de la vie, sante, agronomie, environnement. Université Blaise Pascal – Clermont-Ferrand II, France / Département de biologie. Université de Sherbrooke, Canada
[38] Tondoh J.E., Kouamé F.N., Guéi A.M., Sey B., Koné A.W. and Gnessougou N. 2015. Ecological changes induced by full-sun cocoa farming in Côte d’Ivoire. Glob. Ecol. Conserv., 3: 575–595.
[39] Tondoh J.E., Guéi A.M., Csuzdi C. and Okoth P. 2011. Effect of land-use on the earthworm assemblages in semi-deciduous forests of Central-West Ivory Coast. Biodivers. Conserv., 20: 169–184.
[40] Walker L.R., Wardle D.A., Bardgett R.D. and Clarkson B.D. 2010. The use of chronosequences in studies of ecological succession and soil development. J. Ecol., 98: 725–736.
[41] Walkley A. and Black I.A. 1934. An examination of the Degtjareff method for determining soil organic matter and a proposed modification of the chromic titration method. Soil Sci., 34: 29–38.
[42] Wardle D.A. 1995. Impacts of disturbance on detritus food webs in agro-ecosystems of contrasting tillage and weed management practices. Adv. Ecol. Res., 26: 105–185.
[43] Yang X. and Chen J. 2009. Plant litter quality influences the contribution of soil fauna to litter decomposition in humid tropical forests, southwestern China. Soil Biol. Biochem., 41 : 910–918.
[44] Yéo J.G. 2017. Décomposition de la litière d’hévéa (Hevea brasiliensis Muell., Euphorbiaceae) suivant une séquence d’âge dans le sud de la Côte d’Ivoire. Mémoire de master 1 en biodiversité et gestion durable des écosystèmes. Unité de formation et de recherche des sciences de la nature. Université Nangui Abrogoua, Abidjan-Côte d’Ivoire
[45] Yéo K., Konate S., Tiho S. and Camara S.K. 2011. Impacts of land use types on ant communities in a tropical forest margin (Oumé - Côte d’Ivoire). Afr. J. Agric. Res., 6: 260–274.
[46] Zhang M., Zou X. and Schaefer D.A. 2010. Alteration of soil labile organic carbon by invasive earthworms (Pontoscolex corethrurus) in tropical rubber plantations. Eur. J. Soil Biol., 46: 74–79.

Most read articles by the same author(s)