FUSARIUM HEAD BLIGHT AND MYCOTOXIN CONCENTRATIONS IN A MODERATELY RESISTANT WINTER WHEAT CULTIVAR UNDER DIFFERENT NUTRIENT REGIMES

  • Małgorzata Głosek Sobieraj 1Department of Entomology, Phytopathology and Molecular Diagnostics, University of Warmia and Mazury in Olsztyn, Poland
  • Bożena Cwalina-Ambroziak Department of Entomology, Phytopathology and Molecular Diagnostics, University of Warmia and Mazury in Olsztyn, Poland
  • Agnieszka Waśkiewicz Department of Chemistry, University of Life Sciences in Poznań, Poland
  • Adam Perczak Department of Chemistry, University of Life Sciences in Poznań, Poland
  • Arkadiusz Stępień Department of Agroecosystems, University of Warmia and Mazury in Olsztyn, Poland
Keywords: Triticum aestivum L, microelement fertilizers, Fusarium spp, secondary metabolites

Abstract

Winter wheat cv. Boomer was grown in a field-plot experiment in Tomaszkowo near Olsztyn. During the growing season, the severity of Fusarium head blight (FHB was evaluated on a 5-point scale. The quantitative and qualitative composition of Fusarium fungi colonizing wheat grain was evaluated in a laboratory. The content of Fusarium mycotoxins (deoxynivalenol, DON, nivalenol, NIV, zearalenone, ZEA, fumonisins FB1 and FB2) and ergosterol (ERG) in grain was determined by high-performance liquid chromatography (HPLC). The relationships between the severity of FHB and mycotoxin concentrations in grain were determined by calculating Pearson’s correlation coefficient r in the CORR SAS procedure. The effect of microelement fertilizers on the severity of FHB, the species composition of Fusarium fungi colonizing winter wheat grains and mycotoxin concentrations in grain were determined.Analyses of winter wheat spikes revealed that FHB was less severe in 2012 (healthy ears in the NPK+Mn treatment and the lowest value of the infection index 1% was noted in the absolute control treatment) than in 2013 (the most evident symptoms of FHB in the NPK+Nano-Gro treatment – infection index of approx. 12%). Mineral fertilization, i.e. NPK, NPK with microelements (Cu, Zn, Mn) and NPK with the Nano-Gro® organic growth stimulator, reduced the production of trichothecenes, ZEA and fumonisins B1 and B2 in both years of the study. The highest levels of DON and NIV were noted in winter wheat grain in 2012 in control, control/NPK, NPK+Cu and NPK+Mn treatments. Toxin-producing fungi: Fusarium culmorum, F. poae, Gibberella avenacea, G. zeae were isolated most frequently from winter wheat grain in the above treatments. The severity of FHB was not significantly correlated with the concentrations of ERG, FB1, FB2 and ZEA in grain. A negative correlation was observed between the severity of FHB vs. DON and NIV levels in grain.

 

References

1. Abbas, G., Khattak, J.Z.K., Abbas, G., Ishaque, M., Aslam, M., Abbasi, Z. 2013. Profit maximizing level of potassium fertilizer in wheat production under arid environment. Pak. J. Bot., 45(3): 961-965.
2. Anderson, J. A., 2007. Marker-assisted selection for Fusarium head blight resistance in wheat. Int. J. Food Microbiol., 119(1): 51-53.
3. Aufhammer, W., Kübler, E., Kaul, H. P., Hermann, W., Höhn, D., Yi, C. 2000. Infection with head blight (F. graminearum, F. culmorum) and deoxynivalenol concentration in winter wheat as influenced by N fertilization. Pflanzenbauwissenschaften, 4: 72-78.
4. Bernhoft, A., Torp, M., Clasen, P. E., Løes, A. K., & Kristoffersen, A. B. 2012. Influence of agronomic and climatic factors on Fusarium infestation and mycotoxin contamination of cereals in Norway. Food Additi. Contam. Part A, 29(7): 1129-1140.
5. Blandino, M., Haidukowski, M., Pascale, M., Plizzari, L., Scudellari, D., Reyneri, A. 2012. Integrated strategies for the control of Fusarium head blight and deoxynivalenol contamination in winter wheat. Field Crops Res. 133: 139-149.
6. Bottalico, A., Perrone, G. 2002. Toxigenic Fusarium species and mycotoxins associated with head blight in small-grain cereals in Europe. Plant Pathol., 10: 611-624.
7. Brandt, K., Mølgaard, J. P. 2006. Food quality. In: Kristiansen, P., ed. 2006. Taji, A., Reganold, J. Organic agriculture, A Global Perspective, CSIRO Publishing, 305-322.
8. Chakraborty, S., Liu, C. J., Mitter, V., Scott, J. B., Akinsanmi, O. A., Ali, S., Dill-Macky, R., Nicol, J., Backhouse, D., Simpfendorfer, S. 2006. Pathogen population structure and epidemiology are keys to wheat crown rot and Fusarium head blight management. Australas Plant Pathol., 35, 643-655.
9. Champeil A., Fourbet J. F., Doré T., Rossignol L. 2004. Influence of cropping system on Fusarium head blight and mycotoxin levels in winter wheat. Crop Prot., 23: 531-537.
10. Chełkowski, J., Gromadzka, K., Stępień, Ł., Lenc, L., Kostecki, M., Berthiller, F. 2012. Fusarium species, zearalenone and deoxynivalenol content in preharvest scabby wheat heads from Poland. World Mycotoxin J., 5: 133-141.
11. Chełkowski, J., Ritieni, A., Wiśniewska, H., Mule, G., Logrieco, A. 2007. Occurrence of toxic hexadepsipeptides in preharvested maize ear rot infected by Fusarium poae in Poland. J. Phytopathol., 155: 8.
12. Cromey, M. G., Lauren, D. R., Parkes, R. A., Sinclair, K. I., Shorter, S. C., Wallace, A. R. 2001. Control of Fusarium head blight of wheat with fungicides. Australasian Plant Pathol., 30: 301-308.
13. Czembor, E., Stępień, Ł., Waśkiewicz, A. 2015. Effect of environmental factors on Fusarium species and associated mycotoxins in maize grain grown in Poland. PLoS ONE 2015, DOI: 10(7): 1-18.
14. Dill-Macky, R. 2010. Fusarium head blight (scab). Compendium of Wheat Diseases and Pests, 34–36.
15. Edwards, S. G., Pirgozliev, S. R., Hare, M. C., Jenkinson, P. 2001. Quantification of trichothecene-producing Fusarium species in harvested grain by competitive PCR to determine efficacies of fungicides against Fusarium head blight of winter wheat. Appl. Environ. Microbiol., 67: 1575-1580.
16. Edwards, S. G. 2004. Influence of agricultural practices on Fusarium infection of cereals and subsequent contamination of grain by trichothecene mycotoxins. Toxicology letters, 153(1): 29-35.
17. Filoda, G., Wickiel, G. 2009. Ear infection of winter wheat by Fusarium species and risk of mycotoxins occurrence. Prog. Plant Prot., 49(2): 627-631.
18. Gale, L. R., Harrison, S. A., Ward, T. J., O’Donnell, K., Milus, E. A., Gale, S. W., Kistler, H. C. 2011. Nivalenol-type populations of Fusarium graminearum and F. asiaticum are prevalent on wheat in Southern Louisiana. Phytopathology, 101: 124-134.
19. Glenn, A. E. 2007. Mycotoxigenic Fusarium species in animal feed. Anim. Feed Sci. Technol., 137: 213-240.
20. Goliński, P., Waśkiewicz, A., Gromadzka, K. 2009. Mycotoxins and mycotoxicoses under climatic conditions of Poland. Pol. J. Vet. Sci., 12(4): 581-588.
21. Goliński, P., Waśkiewicz, A., Wisniewska, H., Kiecana, I., Mielniczuk, E., Gromadzka, K., Kostecki, M., Bocianowski, J., Rymaniak, E. 2010. Reaction of winter wheat (Triticum aestivum L.) cultivars to infection with Fusarium spp.: mycotoxin contamination in grain and chaff. Food Add. Contam., 27(7): 1015-1024.
22. Góral, T., Stuper-Szablewska, K., Buśko, M., Boczkowska, M., Walentyn-Góral, D., Wiśniewska, H., Perkowski, J. 2015. Relationships between genetic diversity and Fusarium toxin profiles of winter wheat cultivars. Plant Pathol. J., 31(3): 226-244.
23. Gromadzka, K., Waśkiewicz, A., Chełkowski, J., Goliński, P. 2008. Zearalenone and its metabolites - occurrence, detection, toxicity and guidelines. World Mycotoxin J., 1(2): 209-220.
24. Grzebisz, W., Gaj, R., Przygocka-Cyna, W. 2010. Role of nutrients in build-up of plant resistance mechanisms to pathogens pressure. Prog. Plant Prot., 50(2): 517-531.
25. Hartikainen, E. S., Lankinen, P., Rajasärkkä, J., Koponen, H., Virta, M., Hatakka, A., Kähkönen, M. A. 2012. Impact of copper and zinc on the growth of saprotrophic fungi and the production of extracellular enzymes. Boreal. Env. Res., 17: 210-218.
26. He, L., Liu, Y., Mustapha, A., Lin, M. 2011. Antifungal activity of zinc oxide nanoparticles against Botrytis cinerea and Penicillium expansum. Microbiol. Res., 166: 207-215.
27. Heier, T., Jain, S. K., Kogel, K. H., Pons-Kühnemann, J. 2005. Influence of N-fertilization and fungicide strategies on Fusarium head blight severity and mycotoxin content in winter wheat. J. Phytopathol., 153: 551-557.
28. Jajić, M. I., Jevtić, R. M., Jurić, V. B., Krstović, S. Z., Telečki, M. S., Matić, J. J., Ðilas, S. M., Abramović, B. F. 2011. Presence of deoxynivalenol in small-grain samples from 2009/10 harvest season. Proc. Nat. Sci. Matica srp. Novi Sad., 120: 19-24.
29. Jestoi, M. 2008. Emerging Fusarium-mycotoxins fusaproliferin, beauvericin, enniatins, and moniliformin – a revivew. Crit. Rev. Food Sci. Nutr., 48: 21-49.
30. Jestoi, M., Kokkonen, M., Uhlig, S. 2009. What about the 'other' Fusarium mycotoxins? World Mycotoxin J., 2(2): 181-192.
31. Kosawang, C., Karlsson, M., Jensen, D. F., Dilokpimol, A., Collinge, D. B. 2014. Transcriptomic profiling to identify genes involved in Fusarium mycotoxin deoxynivalenol and zaralenone tolerance in the mycoparasitic fungus Clonostachys rosea. BMC Genomics, 15: 55.
32. Krnjaja, V., Mandić, V., Lević, J., Stanković, S., Petrović, T., Vasić, T., Obradović, A. 2015. Influence of N-fertilization on Fusarium head blight and mycotoxin levels in winter wheat. Crop Protection, 67: 251-256.
33. Lacko-Bartošová, M., Kobida, L. 2011. Incidence of Fusarium mycotoxins and wheat yields in integrated and ecological systems. J. Ecol. Health., 15(1): 19-23.
34. Landschoot, S., Audenaert, K., Waegeman, W., Baets, B., De Haesaert, G. 2013. Influence of maize-wheat rotation systems on Fusarium head blight infection and deoxynivalenol content in wheat under low versus high disease pressure. Crop Prot., 52: 14–21.
35. Langevin, F., Eudes, F., Comeau, A. 2004. Effect of trichothecenes produced by Fusarium graminearum during Fusarium head blight development in six cereal species. Eur. J. Plant Path., 110: 735-746.
36. Lenc, L. 2011. Fusarium head blight and Fusarium spp. occurring on grain of spring wheat in an organic farming system. Phytopathol., 62: 31-39.
37. Liu, W., Langseth, W., Skinnes, H., Elen, O. N., Sundheim, L. 1997. Comparison of visual head blight ratings, seed infection levels, and deoxynivalenol production for assessment of resistance in cereals inoculated with Fusarium culmorum. Eur. J. Plant Pathol., 103: 589-595.
38. Lori, G. A., Sisterna, M. N., Sarandón, S. J., Rizzo, I., Chidichimo, H. 2009. Fusarium head blight in wheat: Impact of tillage and other agronomic practices under natural infection. Crop Prot., 28(6): 495-502.
39. Marschner, P., Fu, Q., Rengel, Z. 2003. Manganese availability and microbial populations in the rhizosphere of wheat genotypes differing in tolerance to Mn deficiency. J. Plant Nutr. Soil Sci., 166: 712-718.
40. McMullen, M., Bergstrom, G., De Wolf, E., Dill-Macky, R., Hershman, D., Shaner, G., Van Sanford, D. 2012. A unified effort to fight an enemy of wheat and barley: Fusarium head blight. Plant Dis., 96: 1712-1728.
41. McMullen, M., Halley, S., Schatz, B., Meyer, S., Jordahl, J., Ransom, J. 2008. Integrated strategies for Fusarium head blight management in the United States. Cereal Res. Commun., 36(Suppl. B45): 563-568.
42. Medina, A., Schmidt-Heydt, M., Cárdenas-Chávez, D. L., Parra, R., Geisen, R., Magan, N. 2013. Integrating toxin gene expression, growth and fumonisin B1 and B2 production by a strain of Fusarium verticillioides under different environmental factors. J. R. Soc. Interface., 10(85).
43. Meier, U. 2001. Growth stages of mono-and dicotyle- donous plants – BBCH Monograph.
44. Mesterházy, Á., Bartók, T., Mirocha, C. G., Komoróczy, R. 1999. Nature of resistance of wheat to Fusarium head blight and deoxynivalenol contamination and their consequences for breeding. Plant Breeding, 118:97-110.
45. Miedaner, T., Schneider, B., Geiger, H. H. 2003. Deoxynivalenol (DON) content and Fusarium head blight resistance in segregating populations of winter rye and winter wheat. Crop Sci., 43: 519-526.
46. Oldenburg, E., Bramm, A., Valenta, H. 2007. Influence of nitrogen fertilization on deoxynivalenol contamination of winter wheat-Experimental field trials and evaluation of analytical methods. Mycotoxin Research, 23(1): 7-12.
47. Oldenburg, E., Kramer, S., Schrader, S., Weinert, J. 2008. Impact of the earthworm Lumbricus terrestris on the degradation of Fusarium-infected and deoxynivalenol-contaminated wheat straw. Soil Biol. Biochem., 40(12): 3049-3053.
48. Paul, P. A., Lipps, P. E., Madden, L. V. 2005. Relationship between visual estimates of Fusarium head blight intensity and deoxynivalenol accumulation in harvested wheat grain: A meta-analysis. Phytopathology, 95: 1225-1236.
49. Puri, K. D., Saucedo, E. S., Zhong, S. 2012. Molecular characterization of Fusarium head blight pathogens sampled from a naturally infected disease nursery used for wheat breeding programs in China. Plant Dis., 96: 1280-1285.
50. Remža, J., Lacko-Bartošová, M., Kosík, T. 2016. Fusarium mycotoxin content of Slovakian organic and conventional cereals. J. Central European Agricult., 17(1): 164-175.
51. Santos, J. S., Souza, T. M., Ono, E. Y. S., Hashimoto, E. H., Bassoi, M. C., Miranda, M. Z., Itano, E. N., Kawamura, O., Hirooka, E.Y. 2013. Natural occurrence of deoxynivalenol in wheat from Parana State, Brazil and estimated daily intake by wheat products. Food Chem., 138: 90-95.
52. Savi, G. D., Piacentinia, K. C., de Souza, S. R., Costa, M. E., Santos, C. M., Scussel, V. M. 2015. Efficacy of zinc compounds in controlling Fusarium head blight and deoxynivalenol formation in wheat (Triticum aestivum L.). Int. J. Food Microbiol., 205: 98-104.
53. Savi, G. D., Bortoluzzi, A. J., Scussel, V. M. 2013. Antifungal properties of zinc-compounds against toxigenic fungi and mycotoxin. Int. J. Food Sci. Technol., 48: 1834-1840.
54. Schaafsma, A. W., Tamburic-Ilinic, L., Miller, J. D., Hooker, D. C. 2001. Agronomic considerations for reducing deoxynivalenol in wheat grain. Can. J. Plant Pathol., 23: 279-285.
55. Shaner, G., Buechley, G. 2004. Relation between head blight severity and DON in natural epidemics of FHB. Page 518 in: Proc. 2nd Int. Symp. Fusarium Head Blight, Orlando, FL.
56. Sharma, D., Sharma, S., Kaitha, B. S., Rajputa, J., Kaurb, M. 2011. Synthesis of ZnO nanoparticles using surfactant free in-air and microwavemethod. Appl. Surf. Sci., 257: 9661-9672.
57. Stanković, S., Lević, J., Ivanović, D., Krnjaja, V., Stanković, G., Tanćić, S. 2012. Fumonisin B1 and its co-occurrence with other fusariotoxins in naturally contaminated wheat grain. Food Control., 23(2): 384-388.
58. Stenglein, S. A. 2009. Fusarium poae: a pathogen that needs more attention. J. Plant Pathol., 91(1): 25-36.
59. Supronienė, S., Mankevičienė, A., Kadžienė, G., Kačergius, A., Feiza, V., Feizienė, D., Semaškienė, R., Dabkevičius, Z., Tamošiunas, K. 2012. The impact of tillage and fertilization on Fusarium infection and mycotoxin production in wheat grains. Žemdirbystė=Agriculture, 99(3): 265-272.
60. Sydenham, E. W., Thiel, P. G., Marasas, W. F. O., Nieuwenhuis, J. J. 1989. Occurrence of deoxynivalenol and nivalenol in Fusarium graminearum infected undergrade wheat in South Africa. J. Agric. Food Chem., 37: 921-926.
61. Tan, D. C., Flematti, G. R., Ghisalberti, E. L., Sivasithamparam, K., Chakraborty, S., Obanor, F., Jayasena, K., Barbetti, M. J. 2012. Mycotoxins produced by Fusarium spp. associated with Fusarium head blight of wheat in Western Australia. Mycotoxin Res., 28: 89-96.
62. Thompson, I. A., Huber, D. M. 2007. Manganese and plant disease. P. 139-154. In: „Mineral Nutrition and Plant Disease” (Datnoff, L. E., Elmer, W. H., Huber, D. M., eds). The APS, St. Paul, Minnesota, USA, 278 pp.
63. Waśkiewicz, A., Gwiazdowski, R., Beszterda, M., Kubiak, K., Wiśniewska, H., Praczyk, T., Goliński, P. 2012. Accumulation of zearalenone in winter wheat grain in the artificial inoculation conditions. Prog. Plant Prot., 53(4): 1070-1073.
64. Waśkiewicz, A., Irzykowska, L., Bocianowski, J., Karolewski, Z., Weber, Z., Goliński, P. 2013. Fusariotoxins in asparagus - their biosynthesis and migration. Food Add. Contam., 30: 1332-1338.
65. Wegulo, S. N., Bockus, W. W., Nopsa, J. H., De Wolf, E. D., Eskridge, K. M., Peiris, K. H., Dowell, F. E. 2011. Effects of integrating cultivar resistance and fungicide application on Fusarium head blight and deoxynivalenol in winter wheat. Plant Disease., 95(5): 554-560.
66. Willyerd, K. T., Li, C., Madden, L. V., Bradley, C. A., Bergstrom, G. C., Sweets, L. E., McMullen, M., Ransom, J. K., Grybauskas, A., Osborne, L., Wegulo, S. N., Hershman, D. E., Wise, K., Bockus, W. W., Groth, D., Dill-Mackey, R., Milus, E., Esker, P. D., Waxman, K. D., Adee, E. A., Ebelhar, S. E., Young, B. D., Paul, P. A. 2012. Efficacy and stability of integrating fungicide and cultivar resistance to manage Fusarium head blight and deoxynivalenol in wheat. Plant Disease., 96(7): 957-967.
67. Wu, J., Liu, Y., Lv, W., Yue, X., Que, Y., Yang, N., Zhang, Z., Ma, Z., Talbot, N. J., Wang, Z. 2015. FgRIC8 is involved in regulating vegetative growth, conidiation, deoxynivalenol production and virulence in Fusarium graminearum. Fungal Gen. Biol., 83: 92-102.
68. Xu, X. M., Parry, W., Nicholson, P., Thomsett, M. A., Simpson, D., Edwards, S. G., Cooke, B. M., Doohan, F. M., Brennan, J. M., Moretti, A., Tocco, G., Mule, G., Hornok, L., Giczey, G., Tatnell, J. 2005. Predominance and association of pathogenic species causing Fusarium ear blight in wheat. Eur. J. Plant Pathol., 112: 143-154.
Published
2017-09-07
Section
Articles